Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Veterinary Science ; : 16-26, 2019.
Article Dans Anglais | WPRIM | ID: wpr-758888

Résumé

The objective of this study was to examine effects of spontaneous adipocyte generation on osteogenic differentiation of porcine skin-derived stem cells (pSSCs). Correlation between osteogenic differentiation and adipocyte differentiation induced by osteocyte induction culture was determined using different cell lines. Osteogenic differentiation efficiency of pSSCs was then analyzed by controlling the expression of adipocyte-specific transcription factors during osteogenic induction culture. Among four cell lines, pSSCs-II had the lowest lipid droplet level but the highest calcium content (p < 0.05). It also expressed significantly low levels of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) and adipocyte protein 2 (aP2) mRNAs but very high levels of runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) mRNAs as osteogenic makers (p < 0.05). Oil red O extraction was increased by 0.1 µM troglitazone (TGZ) treatment but decreased by 50 µM bisphenol A diglycidyl ether (BADGE) (p < 0.05). Calcium content was drastically increased after BADGE treatment compared to that in osteogenic induction control and TGZ-treated pSSCs (p < 0.05). Relative expression levels of PPARγ2 and aP2 mRNAs were increased by TGZ but decreased by BADGE. Expression levels of Rucx2 and ALP mRNAs, osteoblast-specific marker genes, were significantly increased by BADGE treatment (p < 0.05). The expression level of BCL2 like 1 was significantly higher in BADGE-treated pSSCs than that in TGZ-treated ones (p < 0.05). The results demonstrate that spontaneous adipocyte generation does not adversely affect osteogenic differentiation. However, reducing spontaneous adipocyte generation by inhibiting PPARγ2 mRNA expression can enhance in vitro osteogenic differentiation of pSSCs.


Sujets)
Adipocytes , Phosphatase alcaline , Calcium , Lignée cellulaire , Oxyde de diéthyle , Techniques in vitro , Gouttelettes lipidiques , Ostéocytes , Ostéogenèse , Récepteur PPAR gamma , ARN messager , Cellules souches , Facteurs de transcription
2.
Journal of Veterinary Science ; : 235-240, 2013.
Article Dans Anglais | WPRIM | ID: wpr-92909

Résumé

The generation of reactive oxygen species (ROS) and subsequent mitochondrial and DNA damage in bovine somatic cell nuclear transfer (SCNT) embryos were examined. Bovine enucleated oocytes were electrofused with donor cells and then activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. The H2O2 and .OH radical levels, mitochondrial morphology and membrane potential (DeltaPsi), and DNA fragmentation of SCNT and in vitro fertilized (IVF) embryos at the zygote stage were analyzed. The H2O2 (35.6 +/- 1.1 pixels/embryo) and .OH radical levels (44.6 +/- 1.2 pixels/embryo) of SCNT embryos were significantly higher than those of IVF embryos (19.2 +/- 1.5 and 23.8 +/- 1.8 pixels/embryo, respectively, p < 0.05). The mitochondria morphology of SCNT embryos was diffused within the cytoplasm. The DeltaPsi of SCNT embryos was significantly lower (p < 0.05) than that of IVF embryos (0.95 +/- 0.04 vs. 1.21 +/- 0.06, red/green). Moreover, the comet tail length of SCNT embryos was longer than that of IVF embryos (515.5 +/- 26.4 microm vs. 425.6 +/- 25.0 microm, p < 0.05). These results indicate that mitochondrial and DNA damage increased in bovine SCNT embryos, which may have been induced by increased ROS levels.


Sujets)
Animaux , Bovins , Apoptose , Caspase-3/métabolisme , Colorimétrie/médecine vétérinaire , Test des comètes/médecine vétérinaire , Altération de l'ADN , ADN mitochondrial/génétique , Transfert d'embryon/médecine vétérinaire , Embryon de mammifère/cytologie , Fécondation in vitro/médecine vétérinaire , Méthode TUNEL/médecine vétérinaire , Potentiel de membrane mitochondriale , Microscopie confocale/médecine vétérinaire , Microscopie de fluorescence/médecine vétérinaire , Mitochondries/métabolisme , Techniques de transfert nucléaire/médecine vétérinaire , Espèces réactives de l'oxygène/métabolisme
SÉLECTION CITATIONS
Détails de la recherche