Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
The Korean Journal of Physiology and Pharmacology ; : 407-414, 2016.
Article Dans Anglais | WPRIM | ID: wpr-728431

Résumé

This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water (4℃) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of M(2) (methoctramine, 10 µg) and M(3) (4-DAMP, 10 µg) receptor antagonist, but not M(1) (pirenzepine, 10 µg) receptor antagonist, blocked the effect. Also, spinal administration of 5-HT(3) (MDL-72222, 12 µg) receptor antagonist, but not 5-HT(1A) (NAN-190, 15 µg) or 5-HT(2A) (ketanserin, 30 µg) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a signifi cant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic (M(2), M(3)) and serotonergic (5-HT(3)) receptors.


Sujets)
Animaux , Rats , Acétylcholine , Points d'acupuncture , Électroacupuncture , Hyperalgésie , Injections péritoneales , Névralgie , Récepteur muscarinique , Sérotonine , Queue , Eau
SÉLECTION CITATIONS
Détails de la recherche