Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Laboratory Animal Research ; : 209-215, 2017.
Article Dans Anglais | WPRIM | ID: wpr-101379

Résumé

Artemisia argyi is used as a health supplement, tea, and food source in Korea. This study aimed to evaluate the effect of Artemisia argyi (AA) and its active compound, dehydromatricarin A (DA), on the attenuation of airway inflammation in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). The C57BL/6 mice were administered AA (50 mg/kg or 100 mg/kg) and DA (10 mg/kg or 20 mg/kg) by oral gavage from day 0 to 7 days and LPS treated by intranasal instillation 48 hours before the sacrifice. The treatment of AA and DA markedly decreased inflammatory cells in the bronchoalveolar lavage fluid (BALF) compared with that in ALI-induced mice, which was accompanied by a significant reduction in the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in BALF. Furthermore, the administration of AA and DA clearly decreased inducible nitric oxide synthase (iNOS) expression and nuclear factor kappa B (NF-κB) phosphorylation in comparison with that in the ALI-induced mice. The histological examination of the lung tissue revealed that the administration of AA and DA suppressed the inflammatory cell infiltration into the peribronchial and alveolar lesions induced by LPS instillation. Collectively, our results indicated that AA and DA effectively decreased the airway inflammatory response induced by LPS instillation. Therefore, AA and DA may offer a potential therapy for airway inflammatory disease.


Sujets)
Animaux , Souris , Lésion pulmonaire aigüe , Artemisia , Liquide de lavage bronchoalvéolaire , Inflammation , Interleukines , Corée , Poumon , Facteur de transcription NF-kappa B , Nitric oxide synthase type II , Phosphorylation , Thé , Facteur de nécrose tumorale alpha
2.
Immune Network ; : 91-99, 2015.
Article Dans Anglais | WPRIM | ID: wpr-70035

Résumé

Herpes simplex virus (HSV) is a common causative agent of genital ulceration and can lead to subsequent neurological disease in some cases. Here, using a genital infection model, we tested the efficacy of vinegar-processed flos of Daphne genkwa (vp-genkwa) to modulate vaginal inflammation caused by HSV-1 infection. Our data revealed that treatment with optimal doses of vp-genkwa after, but not before, HSV-1 infection provided enhanced resistance against HSV-1 infection, as corroborated by reduced mortality and clinical signs. Consistent with these results, treatment with vp-genkwa after HSV-1 infection reduced viral replication in the vaginal tract. Furthermore, somewhat intriguingly, treatment of vp-genkwa after HSV-1 infection increased the frequency and absolute number of CD3-NK1.1+NKp46+ natural killer (NK) cells producing interferon (IFN)-gamma and granyzme B, which indicates that vp-genkwa treatment induces the activation of NK cells. Supportively, secreted IFN-gamma was detected at an increased level in vaginal lavages of mice treated with vp-genkwa after HSV-1 infection. These results indicate that enhanced resistance to HSV-1 infection by treatment with vp-genkwa is associated with NK cell activation. Therefore, our data provide a valuable insight into the use of vp-genkwa to control clinical severity in HSV infection through NK cell activation.


Sujets)
Animaux , Souris , Daphne , Herpèsvirus humain de type 1 , Inflammation , Interférons , Cellules tueuses naturelles , Mortalité , Simplexvirus , Irrigation thérapeutique , Ulcère
3.
Biomolecules & Therapeutics ; : 288-294, 2014.
Article Dans Anglais | WPRIM | ID: wpr-199234

Résumé

Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-alpha, IL-6, and IL-1beta) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-kappaB luciferase activity and NF-kappaB DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-kappaB activation by inhibiting the degradation of IkappaBalpha and nuclear translocation of p65 subunit of NF-kappaB. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-kappaB activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.


Sujets)
Cytokines , ADN , Régulation négative , Garcinia mangostana , Interleukine-6 , Luciferases , Macrophages , Facteur de transcription NF-kappa B , Phosphorylation , Phosphotransferases , Facteur de transcription AP-1
SÉLECTION CITATIONS
Détails de la recherche