Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Electron. j. biotechnol ; 47: 83-88, sept. 2020. graf, ilus
Article Dans Anglais | LILACS | ID: biblio-1253097

Résumé

BACKGROUND: L-tert-Leucine has been widely used in pharmaceutical, chemical, and other industries as a vital chiral intermediate. Compared with chemical methods, enzymatic methods to produce L-tert-leucine have unparalleled advantages. Previously, we found a novel leucine dehydrogenase from the halophilic thermophile Laceyella sacchari (LsLeuDH) that showed good thermostability and great potential for the synthesis of L-tertleucine in the preliminary study. Hence, we manage to use the LsLeuDH coupling with a formate dehydrogenase from Candida boidinii (CbFDH) in the biosynthesis of L-tert-leucine through reductive amination in the present study. RESULT: The double-plasmid recombinant strain exhibited higher conversion than the single-plasmid recombinant strain when resting cells cultivated in shake flask for 22 h were used. Under the optimized conditions, the double-plasmid recombinant E. coli BL21 (pETDute-FDH-LDH, pACYCDute-FDH) transformed 1 mol·L-1 trimethylpyruvate (TMP) completely into L-tert-leucine with greater than 99.9% ee within 8 h. CONCLUSIONS: The LsLeuDH showed great ability to biosynthesize L-tert-leucine. In addition, it provided a new option for the biosynthesis of L-tert-leucine.


Sujets)
Leucine dehydrogenase/métabolisme , Bacillales/enzymologie , Leucine/biosynthèse , Température , Protéines recombinantes , Escherichia coli , Concentration en ions d'hydrogène
2.
Electron. j. biotechnol ; 16(5): 2-2, Sept. 2013. ilus, tab
Article Dans Anglais | LILACS | ID: lil-690462

Résumé

Background: Enzymatic decolourization has been recently proposed as a promising and eco-friendly method for treatment of synthetic dye-contaminated wastewaters. However, the processes require large quantities of enzymes, attracting significant attention in developing efficient methods for mass production of multifunctional enzymes. Several methods such as response surface methodology (RSM) and orthogonal experiment have been applied to optimize the parameters in bioprocesses for enzyme production. Results: In the present study, a laccase-like enzyme, phenoxazinone synthase (PHS) originated from Streptomyces antibioticus was recombinantly expressed in Escherichia coli BL21 (DE3). The production of PHS in E. coli BL21 was optimized by response surface methodology based on Box-Behnken design. A full third-order polynomial model was generated by data analysis with Statistica 8.0 in which the optimal conditions for PHS production were calculated to be 1.525 mM CuSO4 and 16.096 hrs induction at temperature of 29.88ºC. The highest PHS production under optimal conditions was calculated to be 4098.51 U/l using the established model. Average PHS production obtained from actual production processes carried out under the calculated optimal conditions was 4052.00 U/l, very close to the value predicted by the model. Crude PHS was subsequently tested in Congo red decolourization which exhibited a low decolourization rate of 27% without mediator. Several mediators were found to improve PHS-catalyzed Congo red decolourization, with the highest rate of 73.89% obtained with 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as mediator under optimized conditions of 4000 U/l PHS activity, 10 μM ABTS, 100 μM Congo red, and 8 hrs reaction time. Conclusion: Our results indicated that PHS recombinantly produced in E. coli BL21 was a prospective enzyme for decolorizing reactive dye Congo red.


Sujets)
Oxidoreductases/métabolisme , Rouge Congo/métabolisme , Agents colorants/métabolisme , Streptomyces antibioticus/enzymologie , Laccase/métabolisme , Escherichia coli , Eaux usées
SÉLECTION CITATIONS
Détails de la recherche