Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Chinese Medical Journal ; (24): 731-739, 2006.
Article Dans Anglais | WPRIM | ID: wpr-267055

Résumé

<p><b>BACKGROUND</b>Cockayne syndrome (CS) is a rare human genetic disorder characterized by increased UV sensitivity, developmental abnormalities and premature aging. Cells isolated from individuals with CS have a defect in transcription-coupled DNA repair. Despite the repair defect, there is no any increased risk of spontaneous or UV-induced cancer for CS individuals. The strategy of RNA interfering was used here to explore the potential radiosensitizing and anticancer activity of targeting CS group B (CSB) gene.</p><p><b>METHODS</b>The vectors encoding CSB-specific siRNAs were constructed by inserting duplex siRNA encoding oligonucleotides into the plasmid P(silencer TM 3.1). The cell lines expressing the CSB-siRNA were generated from HeLa cells transfected with the above vectors. Colony-forming ability was used to assay cell survival. Cell cycle was analyzed by FACScan flow cytometry. The apoptosis was measured by detecting the accumulation of sub-G(1) population as well as by fluorescence staining assay. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to semi-quantify mRNA expression. Protein level was detected by Western blotting analysis.</p><p><b>RESULTS</b>Two constructs encoding CSB-specific siRNA were generated, both of them resulted in remarkable suppression on CSB expression in HeLa cells, and led to an increased sensitivity to (gamma-ray and UV light. siRNA-mediated silencing of CSB decreased cell proliferation rate, increased spontaneous apoptosis as well as the occurrence of UV- or cisplatin-induced apoptosis by 2 to 3.5 fold. A significant S phase blockage and a remarkable reduction of G(1) population were induced in control HeLa cells at 18 hours after being exposed to 10 J/m(2) of UV light. The S phase blockage was also observed in UV-irradiated CSB-siRNA transfected HeLa cells, but the extent of increased S phase population was lower than that in the UV-irradiated control cells. No or a relative weak reduction on G(1) phase population was observed in UV-irradiated CSB-siRNA transfected HeLa cells. In addition, siRNA-mediated silencing of CSB promoted the elimination of G(2)/M phase cells after UV light radiation.</p><p><b>CONCLUSIONS</b>siRNA-mediated silencing of CSB causes cells to proliferate more slowly, sensitize cells to genotoxicants, and modify UV radiation-induced cell cycle changes. siRNA-mediated inactivation of CSB could be an attractive strategy for ameliorating cancer therapy, which can be fulfilled via the combination of gene therapy and sensitization of radiotherapy or chemotherapy.</p>


Sujets)
Humains , Apoptose , Effets des rayonnements , Cycle cellulaire , Effets des rayonnements , Prolifération cellulaire , Effets des rayonnements , Cisplatine , Pharmacologie , Syndrome de Cockayne , Génétique , Extinction de l'expression des gènes , Thérapie génétique , Cellules HeLa , Effets des rayonnements , Petit ARN interférent , Génétique , Radiotolérance , Rayons ultraviolets
SÉLECTION CITATIONS
Détails de la recherche