Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
1.
Safety and Health at Work ; : 238-243, 2021.
Article Dans Anglais | WPRIM | ID: wpr-903351

Résumé

Objectives@#The aim of this study was to provide baseline data for the assessment of exposure to indium and to prevent adverse health effects among workers engaged in the electronics and related industries in Republic of Korea. @*Methods@#Total (n = 369) and respirable (n = 384) indium concentrations were monitored using personal air sampling in workers at the following 19 workplaces: six sputtering target manufacturing companies, four manufacturing companies of panel displays, two companies engaged in cleaning of sputtering components, two companies dedicated to the cleaning of sputtering target, and five indium recycling companies. @*Results@#The level of exposure to total indium ranged from 0.9 to 609.3 μg/m3 for the sputtering target companies; from 0.2 to 2,782.0 μg/m3 for the panel display companies and from 0.5 to 2,089.9 μg/m3 for the indium recycling companies. The level of exposure to respirable indium was in the range of 0.02 to 448.6 μg/m3 for the sputtering target companies; 0.01 to 419.5 μg/m3 for the panel display companies; and 0.5 to 436.3 μg/m3 for the indium recycling companies. The indium recycling companies had the most samples exceeding the exposure standard for indium, followed by sputtering target companies and panel display companies. @*Conclusions@#The main finding from this exposure assessment is that many workers who handle indium compounds in the electronics industry are exposed to indium levels that exceed the exposure standards for indium. Hence, it is necessary to continuously monitor the indium exposure of this workforce and take measures to reduce its exposure levels.

2.
Safety and Health at Work ; : 238-243, 2021.
Article Dans Anglais | WPRIM | ID: wpr-895647

Résumé

Objectives@#The aim of this study was to provide baseline data for the assessment of exposure to indium and to prevent adverse health effects among workers engaged in the electronics and related industries in Republic of Korea. @*Methods@#Total (n = 369) and respirable (n = 384) indium concentrations were monitored using personal air sampling in workers at the following 19 workplaces: six sputtering target manufacturing companies, four manufacturing companies of panel displays, two companies engaged in cleaning of sputtering components, two companies dedicated to the cleaning of sputtering target, and five indium recycling companies. @*Results@#The level of exposure to total indium ranged from 0.9 to 609.3 μg/m3 for the sputtering target companies; from 0.2 to 2,782.0 μg/m3 for the panel display companies and from 0.5 to 2,089.9 μg/m3 for the indium recycling companies. The level of exposure to respirable indium was in the range of 0.02 to 448.6 μg/m3 for the sputtering target companies; 0.01 to 419.5 μg/m3 for the panel display companies; and 0.5 to 436.3 μg/m3 for the indium recycling companies. The indium recycling companies had the most samples exceeding the exposure standard for indium, followed by sputtering target companies and panel display companies. @*Conclusions@#The main finding from this exposure assessment is that many workers who handle indium compounds in the electronics industry are exposed to indium levels that exceed the exposure standards for indium. Hence, it is necessary to continuously monitor the indium exposure of this workforce and take measures to reduce its exposure levels.

3.
Safety and Health at Work ; : 130-139, 2012.
Article Dans Anglais | WPRIM | ID: wpr-8702

Résumé

OBJECTIVES: The purpose of this study is to evaluate the tire manufacturing work environments extensively and to identify workers' exposure to hazardous substances in various work processes. METHODS: Personal air sampling was conducted to measure polycyclic aromatic hydrocarbons, carbon disulfide, 1,3-butadiene, styrene, methyl isobutyl ketone, methylcyclohexane, formaldehyde, sulfur dioxide, and rubber fume in tire manufacturing plants using the National Institute for Occupational Safety Health Manual of Analytical Methods. Noise, carbon monoxide, and heat stress exposure were evaluated using direct reading instruments. Past concentrations of rubber fume were assessed using regression analysis of total particulate data from 2003 to 2007, after identifying the correlation between the concentration of total particulate and rubber fume. RESULTS: Workers were exposed to rubber fume that exceeded 0.6 mg/m3, the maximum exposure limit of the UK, in curing and production management processes. Forty-seven percent of workers were exposed to noise levels exceeding 85 dBA. Workers in the production management process were exposed to 28.1degrees C (wet bulb globe temperature value, WBGT value) even when the outdoor atmosphere was 2.7degrees C (WBGT value). Exposures to other substances were below the limit of detection or under a tenth of the threshold limit values given by the American Conference of Governmental Industrial Hygienists. CONCLUSION: To better classify exposure groups and to improve work environments, examining closely at rubber fume components and temperature as risk indicators in tire manufacturing is recommended.


Sujets)
Humains , Aérosols , Atmosphère , Butadiènes , Disulfure de carbone , Monoxyde de carbone , Cyclohexanes , Formaldéhyde , Produits dangereux , Température élevée , Limite de détection , Butyl méthyl cétone , Bruit , Exposition professionnelle , Santé au travail , Hydrocarbures aromatiques polycycliques , Caoutchouc , Styrène , Dioxyde de soufre , Valeurs limites d'exposition
SÉLECTION CITATIONS
Détails de la recherche