RÉSUMÉ
ABSTRACT BACKGROUND: Clinical judgment of initial baseline laboratory tests plays an important role in triage and preliminary diagnosis among coronavirus disease 2019 (COVID-19) patients. OBJECTIVES: To determine the differences in laboratory parameters between COVID-19 and COVID-like patients, and between COVID-19 and healthy children. Additionally, to ascertain whether healthy children or patients with COVID-like symptoms would form a better control group. DESIGN AND SETTING: Cross-sectional study at the Institute for Child and Youth Health Care of Vojvodina, Novi Sad, Serbia. METHODS: A retrospective study was conducted on 42 pediatric patients of both sexes with COVID-19. Hematological parameters (white blood cell count, absolute lymphocyte count and platelet count) and biochemical parameters (natremia, kalemia, chloremia, aspartate aminotransferase [AST], alanine aminotransferase [ALT], lactate dehydrogenase [LDH] and C-reactive protein [CRP]) were collected. The first control group was formed by 80 healthy children and the second control group was formed by 55 pediatric patients with COVID-like symptoms. RESULTS: Leukocytosis, lymphopenia, thrombocytosis, elevated systemic inflammatory index and neutrophil-lymphocyte ratio, hyponatremia, hypochloremia and elevated levels of AST, ALT, LDH and CRP were present in COVID patients, in comparison with healthy controls, while in comparison with COVID-like controls only lymphopenia was determined. CONCLUSIONS: The presence of leukocytosis, lymphopenia, thrombocytosis, elevated systemic inflammatory index and neutrophil-lymphocyte ratio, hyponatremia, hypochloremia and elevated levels of AST, ALT, LDH and CRP may help healthcare providers in early identification of COVID-19 patients. Healthy controls were superior to COVID-like controls since they provided better insight into the laboratory characteristics of children with novel betacoronavirus (SARS-CoV-2) infection.
RÉSUMÉ
The aim of the study was to determine the in vivo anti-plasmodial activity of three plants Rhamnus prinoides, Rubus keniensis and Garcinia buchananii which are used for malaria treatment by indigenous communities in Kenya. This work was done at the Department of Biological and Preclinical studies, Institute of Traditional Medicine, Muhimbili University of Health & Allied Sciences in October 2016 to August 2017. Male and female albino mice were infected with Plasmodium berghei (ANKA) in the Peter’s four day suppression test. Five groups of mice; Group 1 (solvent: 5 mL/kg body weight of 1% carboxymethyl cellulose), Group 5 (10 mg/kg body weight chloroquine), Groups 2, 3 and 4 were given 200, 400 and 800 mg/kg body weight of plant extracts. The results showed that 5% aqueous methanol extracts of R. prinoides, G. buchananii and R. keniensis exhibited higher anti-plasmodial activity than the 1:1 dichloromethane: methanol extracts in the preliminary testing. The doses showing 50% parasite suppression (EC50) were 139.2, 169.4 and 245.1 mg/kg body weight for R. prinoides, G. buchananii and R. keniensis, respectively. In vivo anti-plasmodial activity of the three plants has supported the traditional use of extracts of Rhamnus prinoides, Rubus keniensis and Garcinia buchananii for treatment of malaria. Isolation of compounds from these plants is in progress.
RÉSUMÉ
Background: The Indian house crow, Corvus splendens (Vieillot) was introduced in Zanzibar, Tanzania by the British and immigrants from India in 1897 to help clean the town. The crow is responsible for polluting the environment, water sources and human surroundings by their droppings and the rubbish they carry. This behavior has led to concern that, the crows may be responsible for the spread of certain pathogens including Salmonella and their persistence in the environment.Given the zoonotic potential of Salmonella, the main aim of this study was to investigate the occurrence of antimicrobial resistant Salmonella infections in Indian house crows and to determine if the isolates were similar to those associated with disease in livestock or humans. Methods: Indian house crows were lured with meat and blood baits to land into the crow live-trap set at the Mabibo compound of the National Institute for Medical Research (NIMR) in Dar es Salaam city in Tanzania. A total of 100 house crows were captured, humanely sacrificed, and their small and large intestines were obtained by using aseptic techniques for microbiological investigations. Culture technique was employed to detect the presence of Salmonella in intestinal contents; and preliminary identification of the isolates was based on colonial characteristics on selective media and microscopic examination of smears following Gram staining. Confirmation of Salmonella species was done by biochemical tests. Antimicrobial susceptibility testing was done by using the disc diffusion method on Mueller Hinton agar. Results and Discussion: Eight isolates were identified by standard microbiological techniques as Salmonella spp. (6 suggestive of Salmonella gallinarum and 2 suggestive of S. Typhi). All isolates were found to be susceptible to ciprofloxacin but resistant to amoxicillin. Lower levels of susceptibility were noted for chloramphenicol and ceftriaxone. Our results demonstrate the presence of antimicrobial resistant Salmonella spp. in the Indian house crows’ population and provide an indication of potential public and poultry health risks associated with these birds in the coastal area. Conclusion: The occurrence of antibiotic resistant S. Typhi and S. gallinarum among Indian house crows has both veterinary and public health consequences as they may be transmitted to poultry and humans. This therefore provides further rationale for the public action on eradicating the house crows.