Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres








Gamme d'année
1.
Article | IMSEAR | ID: sea-229909

RÉSUMÉ

Agriculture, as one of the oldest and most essential human endeavors, has constantly evolved through the integration of technology. In recent years, nanotechnology has emerged as a pivotal tool, redefining traditional agricultural paradigms. This comprehensive review delves into the multifaceted implications and applications of nanotechnology within agriculture, providing a holistic view of its past, present, and future roles. Historically, nanotechnology's initial foray into agriculture sought to tackle prevalent challenges, from pest control to soil fertility. Despite some early obstacles, this merger has since showcased myriad successful applications, underscored by targeted and efficient solutions that significantly enhance crop yield and food quality. The present-day agricultural landscape is punctuated by nano-fertilizers ensuring optimal nutrient uptake, nanopesticides targeting pests with minimal off-target effects, nanosensors enabling precision agriculture, nano-based food packaging enhancing shelf life, and nanomaterials aiding in disease diagnosis and treatment. However, with innovation come challenges. The environmental and health ramifications of introducing nanoparticles into ecosystems remain a concern. While they promise reduced chemical usage and waste, potential issues like nanoparticle accumulation, unknown long-term effects, and possible toxicity necessitate rigorous research and regulation. Economically, the nano-agri sector promises substantial yield increases, but it also requires significant investments. As the technology permeates the agricultural supply chain, ramifications on job markets, trade dynamics, and global competitiveness become evident. Looking forward, anticipated advancements include smart nanodevices, potent nano-bio interfaces, and self-repairing materials. Nanobots, soil health rejuvenation techniques, and advanced nano-encapsulation are among the many potential R&D avenues. The road ahead requires collaborative efforts from governments, research institutions, farmers, and the private sector. Public-private partnerships, in particular, could prove indispensable, merging public sector oversight with private sector innovation.

2.
Article | IMSEAR | ID: sea-229119

RÉSUMÉ

It aims to examine the impact of nano and non-nano fertilizers on rice quality and productivity. Rice is a staple food crop for a large portion of the global population, the use of fertilizers is essential for optimizing yields and maintaining food security. The emergence of nano-fertilizers presents new opportunities for enhancing nutrient use efficiency, plant growth, and rice quality. However, limitations in existing research, such as the lack of comparative studies and methodological inconsistencies, make it difficult to draw definitive conclusions about the relative merits of nano and non-nano fertilizers. The implementation of nano-fertilizers faces challenges related to cost, accessibility, regulatory frameworks, and public perception. Future research should focus on long-term field studies, investigating potential risks and benefits, and developing sustainable and cost-effective formulations. By addressing these challenges and knowledge gaps, this review seeks to provide a comprehensive understanding of the potential impacts of nano and non-nano fertilizers on rice cultivation and contribute to the development of sustainable agricultural practices.

3.
Article | IMSEAR | ID: sea-228994

RÉSUMÉ

The study was carried out in the winter (rabi) season to determine effect of Nano and Non-nano nutrient, the study's findings revealed that wheat grown with 100% NPK + nano nutrients (N + P + K + Zn) had significantly higher uptake, namely N (143.1 kg ha-1), P (28.9 kg ha-1), K (109.0 kg ha-1), and Zn (519.5 g ha-1). Applications of nano nutrients—N, P, K, and Zn, and N + P + K + Zn + 75% NPK—worked synergistically and increased content and uptake over 100% NPK. Similarly, the agronomic efficiency (kg of grain kg-1 of nutrient applied) of N (22.4), P (56.0), and K (84.0) was greatest when 75% NPK + nano N + bio nano P, K, and Zn were applied. In a similar manner, physiological efficiency and partial factor productivity were also found to be significantly higher with the same treatment. Thus, the wheat crop grown with the application of Nano-N + 75 and 100 percent NPK led to higher nutrient content, accumulation, and efficiency.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE