Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
1.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(7): e10579, 2021. tab, graf
Article de Anglais | LILACS | ID: biblio-1249313

RÉSUMÉ

NOTCH pathway proteins, including the transcriptional factor HES1, play crucial roles in the development of the inner ear by means of the lateral inhibition mechanism, in which supporting cells have their phenotype preserved while they are prevented from becoming hair cells. Genetic manipulation of this pathway has been demonstrated to increase hair cell number. The present study aimed to investigate gene expression effects in hair cells and supporting cells after Hes1-shRNA lentivirus transduction in organotypic cultures of the organ of Corti from postnatal-day-3 mice. Forty-eight hours after in vitro knockdown, Hes1 gene expression was reduced at both mRNA and protein levels. Myo7a (hair cell marker) and Sox2 (progenitor cell marker) mRNA levels also significantly increased. The modulation of gene expression in the organ of Corti upon Hes1 knockdown is consistent with cell phenotypes related to lateral inhibition mechanism interference in the inner ear. The lentivirus-based expression of Hes1-shRNA is a valuable strategy for genetic interference in the organ of Corti and for future evaluation of its efficacy in protocols aiming at the regeneration of hair cells in vivo.


Sujet(s)
Animaux , Rats , Cochlée , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Organe spiral , Différenciation cellulaire , Récepteurs Notch , Facteur de transcription HES-1/génétique , Cellules ciliées auditives
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;49(4): e5064, 2016. tab, graf
Article de Anglais | LILACS | ID: biblio-951670

RÉSUMÉ

In mammals, damage to sensory receptor cells (hair cells) of the inner ear results in permanent sensorineural hearing loss. Here, we investigated whether postnatal mouse inner ear progenitor/stem cells (mIESCs) are viable after transplantation into the basal turns of neomycin-injured guinea pig cochleas. We also examined the effects of mIESC transplantation on auditory functions. Eight adult female Cavia porcellus guinea pigs (250-350g) were deafened by intratympanic neomycin delivery. After 7 days, the animals were randomly divided in two groups. The study group (n=4) received transplantation of LacZ-positive mIESCs in culture medium into the scala tympani. The control group (n=4) received culture medium only. At 2 weeks after transplantation, functional analyses were performed by auditory brainstem response measurement, and the animals were sacrificed. The presence of mIESCs was evaluated by immunohistochemistry of sections of the cochlea from the study group. Non-parametric tests were used for statistical analysis of the data. Intratympanic neomycin delivery damaged hair cells and increased auditory thresholds prior to cell transplantation. There were no significant differences between auditory brainstem thresholds before and after transplantation in individual guinea pigs. Some mIESCs were observed in all scalae of the basal turns of the injured cochleas, and a proportion of these cells expressed the hair cell marker myosin VIIa. Some transplanted mIESCs engrafted in the cochlear basilar membrane. Our study demonstrates that transplanted cells survived and engrafted in the organ of Corti after cochleostomy.


Sujet(s)
Animaux , Femelle , Organe spiral/chirurgie , Cellules souches , Transplantation de cellules souches/méthodes , Cellules ciliées auditives internes/transplantation , Surdité neurosensorielle/chirurgie , Seuil auditif , Immunohistochimie , Inhibiteurs de la synthèse protéique , Néomycine , Survie cellulaire , Cellules cultivées , Reproductibilité des résultats , Potentiels évoqués auditifs du tronc cérébral , Résultat thérapeutique , Cochons d'Inde , Souris de lignée BALB C
4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;39(2): 219-226, Feb. 2006. tab, graf
Article de Anglais | LILACS | ID: lil-420273

RÉSUMÉ

Mitochondrial mutations are responsible for at least 1 percent of the cases of hereditary deafness, but the contribution of each mutation has not yet been defined in African-derived or native American genetic backgrounds. A total of 203 unselected hearing-impaired patients were screened for the presence of the mitochondrial mutation A1555G in the 12S rRNA gene and mutations in the tRNA Ser(UCN) gene in order to assess their frequency in the ethnically admixed Brazilian population. We found four individuals with A1555G mutation (2 percent), which is a frequency similar to those reported for European-derived populations in unselected samples. On the other hand, complete sequencing of the tRNA Ser(UCN) did not reveal reported pathogenic substitutions, namely A7445G, 7472insC, T7510C, or T7511C. Instead, other rare substitutions were found such as T1291C, A7569G, and G7444A. To evaluate the significance of these findings, 110 "European-Brazilians" and 190 "African-Brazilians" unrelated hearing controls were screened. The T1291C, A7569G and G7444A substitutions were each found in about 1 percent (2/190) of individuals of African ancestry, suggesting that they are probably polymorphic. Our results indicate that screening for the A1555G mutation is recommended among all Brazilian deaf patients, while testing for mutations in the tRNA Ser(UCN) gene should be considered only when other frequent deafness-causing mutations have been excluded or in the presence of a maternal transmission pattern.


Sujet(s)
Femelle , Humains , Mâle , Perte d'audition/génétique , Mutation/génétique , ARN ribosomique/génétique , ARN de transfert de la sérine/génétique , 38410/génétique , Brésil , Études cas-témoins , Analyse de mutations d'ADN , 38413/génétique , Prédisposition génétique à une maladie , Marqueurs génétiques/génétique , Pedigree , Réaction de polymérisation en chaîne , ARN , Indice de gravité de la maladie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE