Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Indian J Exp Biol ; 2013 Sept; 51(9): 764-772
Article Dans Anglais | IMSEAR | ID: sea-149381

Résumé

Klebsiella pneumoniae, an important opportunistic pathogen, exists as a biofilm in persistent infections and in-dwelling medical devices. With the objective of identifying natural compounds inhibiting biofilm formation in K. pneumoniae, 35clinical isolates were screened,out of which 7 strong biofilm producers were identified. Six natural compounds were tested for their inhibitory effects on bacterial growth and biofilm formation by determining the minimum inhibitory concentration and minimum concentration for biofilm inhibition (MBIC) for each compound. The results show that reserpine followed by linoleic acid, were the most potent biofilm inhibitors. Reserpine, an efflux pump inhibitor was effective at biofilm inhibition at a concentration of 0.0156 mg/mL, 64-fold lower concentration than its MIC. Linoleic acid, an essential fatty acid was effective as a biofilm inhibitor at 0.0312 mg/mL, which is 32-fold lower than its MIC. Berberine, another plant derived antimicrobial, chitosan and eugenol had an MBIC value of 0.0635 mg/mL. Curcumin, a natural phenolic compound was effective at biofilm inhibition at a concentration of 0.25 mg/mL, which is 50 fold less than its MIC. Notably, the MIC and MBIC data on these 6 natural compounds was reproducible in all seven high biofilm forming isolates of K. pneumoniae. The present report is a comprehensive comparative analysis of the dose dependent inhibition of various natural compounds on biofilm formation in K. pneumoniae.


Sujets)
Biofilms/effets des médicaments et des substances chimiques , Produits biologiques/pharmacologie , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/croissance et développement , Klebsiella pneumoniae/physiologie , Tests de sensibilité microbienne
2.
Article Dans Anglais | IMSEAR | ID: sea-143831

Résumé

Purpose: Resistance to fluoroquinolones, a commonly prescribed antimicrobial for Gram-negative and Gram-positive microorganisms, is of importance in therapy. The purpose of this study was to screen for the presence of Plasmid-Mediated Quinolone Resistance (PMQR) determinants in clinical isolates of Klebsiella pneumoniae. Materials and Methods: Extended-Spectrum Beta-Lactamase (ESBL) isolates of K. pneumoniae collected during October 2009 were screened by the antimicrobial susceptibility test. The plasmids from these isolates were analysed by specific Polymerase chain Reaction (PCR) for qnrA, qnrB and aac(6')-1b. The amplified products were sequenced to confirm the allele. Results: Our analysis showed that 61% out of the 23 ESBL K. pneumoniae isolates were resistant to ciprofloxacin and 56% to levofloxacin. The PMQR was demonstrated by transforming the plasmids from two isolates P12 and P13 into E. coli JM109. The PMQR gene qnrA was found in 16 isolates and qnrB in 11 isolates. The plasmid pKNMGR13 which conferred an minimum inhibitory concentration (MIC) of more than 240 ΅g/ml in sensitive E. coli was found to harbour the qnrA1 and qnrB1 allele. Furthermore, the gene aac(6')-1b-cr encoding a variant aminoglycoside 6'-N Acetyl transferase which confers resistance to fluoroquinolones was found in the same plasmid. Conclusions: Our report shows the prevalence of PMQR mediated by qnrA and qnrB in multidrug-resistant K. pneumoniae isolates from Chennai. A multidrug-resistant plasmid conferring high resistance to ciprofloxacin was found to harbour another PMQR gene, aac(6')-1b-cr mutant gene. This is the first report screening for PMQR in K. pneumoniae isolates from India.

3.
Indian J Med Microbiol ; 2011 Jul-Sept; 29(3): 262-268
Article Dans Anglais | IMSEAR | ID: sea-143828

Résumé

Purpose: Resistance to fluoroquinolones, a commonly prescribed antimicrobial for Gram-negative and Gram-positive microorganisms, is of importance in therapy. The purpose of this study was to screen for the presence of Plasmid-Mediated Quinolone Resistance (PMQR) determinants in clinical isolates of Klebsiella pneumoniae. Materials and Methods: Extended-Spectrum Beta-Lactamase (ESBL) isolates of K. pneumoniae collected during October 2009 were screened by the antimicrobial susceptibility test. The plasmids from these isolates were analysed by specific Polymerase chain Reaction (PCR) for qnrA, qnrB and aac(6')-1b. The amplified products were sequenced to confirm the allele. Results: Our analysis showed that 61% out of the 23 ESBL K. pneumoniae isolates were resistant to ciprofloxacin and 56% to levofloxacin. The PMQR was demonstrated by transforming the plasmids from two isolates P12 and P13 into E. coli JM109. The PMQR gene qnrA was found in 16 isolates and qnrB in 11 isolates. The plasmid pKNMGR13 which conferred an minimum inhibitory concentration (MIC) of more than 240 ΅g/ml in sensitive E. coli was found to harbour the qnrA1 and qnrB1 allele. Furthermore, the gene aac(6')-1b-cr encoding a variant aminoglycoside 6'-N Acetyl transferase which confers resistance to fluoroquinolones was found in the same plasmid. Conclusions: Our report shows the prevalence of PMQR mediated by qnrA and qnrB in multidrug-resistant K. pneumoniae isolates from Chennai. A multidrug-resistant plasmid conferring high resistance to ciprofloxacin was found to harbour another PMQR gene, aac(6')-1b-cr mutant gene. This is the first report screening for PMQR in K. pneumoniae isolates from India.

SÉLECTION CITATIONS
Détails de la recherche