Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres








Gamme d'année
1.
Article | IMSEAR | ID: sea-229962

RÉSUMÉ

The Fall Armyworm (FAW), Spodoptera frugiperda, represents a formidable challenge to global agriculture due to its rapid spread and significant impact on crop yields. This comprehensive review focuses on providing an in-depth exploration of FAW's biology, its seasonal dynamics, and the multifaceted strategies employed for its management. Leveraging datasets from multiple geographical regions, we examined the patterns of FAW infestations and their correlation with various climatic and environmental factors. The research emphasized the criticality of predictive modeling tools in forecasting pest incidence and highlighted the potential of machine learning and big data analytics in enhancing the accuracy of these predictive tools. Innovative management solutions, spanning from genetic interventions to the application of nanotechnology, were also discussed, underlining their potential in mitigating FAW damage. Central to our findings was the recurrent theme of international collaboration; the need for globally coordinated efforts in research, monitoring, and the sharing of resources emerged as a pivotal component in the fight against this pest. By incorporating diverse perspectives, including field insights from farmers and advancements in modern technology, this review aims to provide a holistic overview of the present scenario and proffers strategies for future action against the FAW threat.

2.
Article | IMSEAR | ID: sea-229943

RÉSUMÉ

Strawberry cultivation represents a significant sector within the agriculture industry. The use of nitrogen (N), calcium (Ca), and nano fertilizers has emerged as an essential practice to improve both the yield and quality of strawberries. This comprehensive review aims to explore the multifaceted influence of these fertilizers on Fragaria × ananassa Duch, encompassing growth, quality, and environmental considerations. The study begins with an examination of historical perspectives and existing research, identifying gaps in the literature. The methodology includes a rigorous selection process for studies, with data extraction, quality assessment, and statistical analysis. The effects of N, Ca, and nano fertilizers on growth yield are thoroughly examined, considering their combined and individual contributions. The quality of strawberries is assessed based on physical appearance, nutritional content, and sensory characteristics, highlighting the role of these nutrients in color development, size, texture, vitamin content, sugar-acid balance, flavor, and aroma. The environmental impact is another critical aspect, exploring the effect on soil quality, including nutrient leaching, soil structure, microbial activity, and long-term health. The impact on surrounding ecosystems considers aquatic and terrestrial effects, biodiversity considerations, and the associated sustainability considerations. These encompass resource efficiency, environmental compliance, life cycle analysis, and integration with sustainable agricultural practices. Findings indicate that while N, Ca, and nano fertilizers significantly enhance growth and quality, careful management is essential to mitigate potential environmental concerns. The application of nano fertilizers presents promising opportunities for precise nutrient delivery, promoting efficiency, and sustainability. The review concludes by emphasizing the importance of continued research, innovation, and responsible management of these fertilizers in achieving a harmonious balance between productivity, quality, and environmental stewardship. The insights provided in this review contribute valuable knowledge to both scientific and agricultural communities, offering guidance for future research and best practices in strawberry cultivation.

3.
Article | IMSEAR | ID: sea-229828

RÉSUMÉ

The need for food and the expanding global population have put enormous pressure on agriculture to increase crop yield while preserving sustainability. Since rice is a staple diet for millions of people, novel methods are needed to increase yields without harming the environment. The possible advantages of using nano fertilizers in rice farming are examined in this abstract in order to raise yields, increase farmer profitability, and ensure long-term sustainability. Nano-sized carriers created for effective nutrient delivery to crops are called nano fertilizers, an innovative application of nanotechnology in agriculture. Their special qualities, such as their large surface area and regulated release mechanisms, allow for the targeted supply of nutrients to rice plants, improving nutrient uptake and utilization. Nano-fertilizers successfully optimize nutrient availability as a consequence, increasing crop output. According to studies, using nano fertilizers in rice farming increases grain yields because plants are better able to absorb and assimilate nutrients. The crop's resistance to environmental challenges and disease strains is strengthened as a result of this enhanced nutrient utilization, which also boosts yield and contributes to sustainable rice farming practices. Furthermore, nano fertilizers offer cost-effectiveness and increased profitability for farmers. Despite their initial higher cost, the efficient nutrient delivery of nano fertilizers reduces the overall application rate required compared to conventional fertilizers. This reduction in input costs translates to improved profitability for farmers, promoting economic sustainability in rice production.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE