RÉSUMÉ
Abstract Sarcopenia is a pathology resulting from a progressive and severe loss of muscle mass, strength, and function in the course of aging, which has deleterious consequences on quality of life. Among the most widespread studies on the issue are those focused on the effect of different types of physical exercise on patients with sarcopenia. This randomized controlled study aimed to compare the effects of a whole-body vibration exercise (WBV) session on the inflammatory parameters of non-sarcopenic (NSG, n=22) and sarcopenic elderly (SG, n=22). NSG and SG participants were randomly divided into two protocols: intervention (squat with WBV) and control (squat without WBV). After a one-week washout period, participants switched protocols, so that everyone performed both protocols. Body composition was assessed by dual-energy radiological absorptiometry (DXA) and function through the six-minute walk test (6MWD) and Short Physical Performance Battery (SPPB). Plasma soluble tumor necrosis factor receptors (sTNFR) were determined by enzyme-linked immunosorbent assay (ELISA) and measured before and immediately after each protocol. After exercise with WBV, there was an increase in sTNFR2 levels in the NSG (P<0.01; d=-0.69 (-1.30; -0.08) and SG (P<0.01, d=-0.95 (-1.57; -0.32) groups. In conclusion, an acute session of WBV influenced sTNFr2 levels, with sarcopenic individuals showing a greater effect. This suggested that WBV had a more pronounced impact on sTNFr2 in those with loss of muscle strength and/or physical performance. Additionally, WBV is gaining recognition as an efficient strategy for those with persistent health issues.
RÉSUMÉ
The objective of this study was to investigate the effect of whole body vibration (WBV) exercise on oxidative stress markers in a group of women with fibromyalgia (FM) compared to a group of healthy women (CT). Twenty-one women diagnosed with FM and 21 age- and weight-matched healthy women were enrolled the study. Plasma oxidative stress markers (primary outcomes) were evaluated at rest and after WBV, and included thiobarbituric acid reactive substances (TBARS), iron reduction capacity (FRAP), superoxide dismutase antioxidant enzymes activity (SOD), and catalase (CAT). At rest, the FM group had higher TBARS (P<0.001) and FRAP (P<0.001), and lower CAT (P=0.005) compared to the CT. In the CT group, the WBV had no effect on TBARS (P=0.559) and FRAP (P=0.926), whereas it increased both SOD (P<0.001) and CAT (P<0.001). In the FM group, the WBV reduced TBARS (p <0.001), FRAP (P<0.001), and CAT (P=0.005), while it increased SOD (P=0.019). There was an interaction effect (moments vs groups) in the TBARS (effect size=1.34), FRAP (effect size=0.93), CAT (effect size=1.45), and SOD (effect size=1.44) (P<0.001). A single trial of WBV exercise improved all oxidant and antioxidant parameters towards a greater adaptation to the stress response in FM women.
Sujet(s)
Humains , Vibration , Marqueurs biologiques/sang , Fibromyalgie/sang , Stress oxydatif/physiologie , Fibromyalgie/physiopathologie , Études cas-témoinsRÉSUMÉ
Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H) and 8 normotensive (N) subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively). They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C) followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity). Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS) levels and ferric reducing ability of plasma (FRAP). Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05), although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1) and lower TBARS (P<0.01) and FRAP (P<0.05) levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors), present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.
Sujet(s)
Humains , Mâle , Adulte , Adulte d'âge moyen , Cytokines/sang , Hypertension artérielle/physiopathologie , Pression artérielle/physiologie , Pression sanguine/physiologie , Études cas-témoins , Rythme cardiaque/physiologie , Température élevée , Hypertension artérielle/sang , Inflammation/physiopathologie , Peroxydation lipidique/physiologie , Oxydoréduction , Substances réactives à l'acide thiobarbiturique/analyseRÉSUMÉ
Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.
Sujet(s)
Animaux , Mâle , Conditionnement physique d'animal/physiologie , Natation/physiologie , Encéphale/métabolisme , Stress oxydatif/physiologie , Traitement par les exercices physiques/méthodes , Antioxydants/métabolisme , Valeurs de référence , Spectrophotométrie , Superoxide dismutase/analyse , Facteurs temps , Poids , Peroxydation lipidique/physiologie , Répartition aléatoire , Reproductibilité des résultats , Espèces réactives de l'oxygène/métabolisme , Malonaldéhyde/analyse , Malonaldéhyde/métabolisme , Antioxydants/analyseRÉSUMÉ
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.
Sujet(s)
Humains , Mâle , Adulte , Adulte d'âge moyen , Régulation de la température corporelle/physiologie , Environnement , Exercice physique/physiologie , Température élevée , Hypertension artérielle/physiopathologie , Pression artérielle/physiologie , Rythme cardiaque , Consommation d'oxygène/physiologie , Course à pied/physiologie , Sueur/physiologieRÉSUMÉ
Leprosy is caused by Mycobacterium leprae, which induces chronic granulomatous infection of the skin and peripheral nerves. The disease ranges from the tuberculoid to the lepromatous forms, depending on the cellular immune response of the host. Chemokines are thought to be involved in the immunopathogenesis of leprosy, but few studies have investigated the expression of chemokine receptors on leukocytes of leprosy patients. In the present study, we evaluated 21 leprosy patients (M/F: 16/5) with a new diagnosis from the Dermatology Outpatient Clinic of the University Hospital, Federal University of Minas Gerais. The control group was composed of 20 healthy members (M/F: 15/5) of the community recruited by means of announcements. The expression of CCR2, CCR3, CCR5, and CXCR4 was investigated by flow cytometry on the surface of peripheral blood lymphocytes. There was a decrease in percentage of CD3+CXCR4+ and CD4+CXCR4+ lymphocytes in the peripheral blood of leprosy patients (median [range], 17.6 [2.7-41.9] and 65.3 [3.9-91.9], respectively) compared to the control group (median [range], 43.0 [3.7-61.3] and 77.2 [43.6-93.5], respectively). The percentage of CD4+CXCR4+ was significantly lower in patients with the tuberculoid form (median [range], 45.7 [0.0-83.1]) of the disease, but not in lepromatous patients (median [range], 81.5 [44.9-91.9]). The CXCR4 chemokine receptor may play a role in leprosy immunopathogenesis, probably directing cell migration to tissue lesions in tuberculoid leprosy patients.