Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Neurogastroenterology and Motility ; : 135-143, 2017.
Article Dans Anglais | WPRIM | ID: wpr-110251

Résumé

BACKGROUND/AIMS: Wistar rat dams exposed to limited nesting stress (LNS) from post-natal days (PND) 2 to 10 display erratic maternal behavior, and their pups show delayed maturation of the hypothalamic-pituitary-adrenal axis and impaired epithelial barrier at PND10 and a visceral hypersensitivity at adulthood. Little is known about the impact of early life stress on the offspring before adulthood and the influence of sex. We investigated whether male and female rats previously exposed to LNS displays at weaning altered corticosterone, intestinal permeability, and microbiota. METHODS: Wistar rat dams and litters were maintained from PND2 to 10 with limited nesting/bedding materials and thereafter reverted to normal housing up to weaning (PND21). Control litters had normal housing. At weaning, we monitored body weight, corticosterone plasma levels (enzyme immunoassay), in vivo intestinal to colon permeability (fluorescein isothiocyanate-dextran 4 kDa) and fecal microbiota (DNA extraction and amplification of the V4 region of the 16S ribosomal RNA gene). RESULTS: At weaning, LNS pups had hypercorticosteronemia and enhanced intestinal permeability with females > males while body weights were similar. LNS decreased fecal microbial diversity and induced a distinct composition characterized by increased abundance of Gram positive cocci and reduction of fiber-degrading, butyrate-producing, and mucus-resident microbes. CONCLUSIONS: These data indicate that chronic exposure to LNS during the first week post-natally has sustained effects monitored at weaning including hypercorticosteronemia, a leaky gut, and dysbiosis. These alterations may impact on the susceptibility to develop visceral hypersensitivity in adult rats and have relevance to the development of irritable bowel syndrome in childhood.


Sujets)
Adulte , Animaux , Femelle , Humains , Mâle , Rats , Poids , Côlon , Corticostérone , Dysbiose , Cocci à Gram positif , Logement , Hypersensibilité , Syndrome du côlon irritable , Comportement maternel , Microbiote , Perméabilité , Plasma sanguin , ARN ribosomique 16S , Stress psychologique , Sevrage
2.
Journal of Neurogastroenterology and Motility ; : 8-24, 2015.
Article Dans Anglais | WPRIM | ID: wpr-14539

Résumé

The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress.


Sujets)
Humains , Encéphale , Côlon , Corticolibérine , Défécation , Diarrhée , Protéines G , Hyperalgésie , Syndrome du côlon irritable , Mastocytes , Sérotonine , Urocortines , Douleur viscérale
SÉLECTION CITATIONS
Détails de la recherche