Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
International Journal of Stem Cells ; : 85-94, 2022.
Article Dans Anglais | WPRIM | ID: wpr-925071

Résumé

Background and Objectives@#Brain organoids have the potential to improve our understanding of brain development and neurological disease. Despite the importance of brain organoids, the effect of vascularization on brain organoids is largely unknown. The objective of this study is to develop vascularized organoids by assembling vascular spheroids with cerebral organoids. @*Methods@#and Results: In this study, vascularized spheroids were generated from non-adherent microwell culture system of human umbilical vein endothelial cells, human dermal fibroblasts and human umbilical cord blood derived mesenchymal stem cells. These vascular spheroids were used for fusion with iPSCs induced cerebral organoids. Immunostaining studies of vascularized organoids demonstrated well organized vascular structures and reduced apoptosis. We showed that the vascularization in cerebral organoids up-regulated the Wnt/β-catenin signaling. @*Conclusions@#We developed vascularized cerebral organoids through assembly of brain organoids with vascular spheroids. This method could not only provide a model to study human cortical development but also represent an opportunity to explore neurological disease.

2.
Journal of Veterinary Science ; : 487-497, 2017.
Article Dans Anglais | WPRIM | ID: wpr-16835

Résumé

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective death of motor neurons in the central nervous system. The main cause of the disease remains elusive, but several mutations have been associated with the disease process. In particular, mutant superoxide dismutase 1 (SOD1) protein causes oxidative stress by activating glia cells and contributes to motor neuron degeneration. KCHO-1, a novel herbal combination compound, contains 30% ethanol and the extracts of nine herbs that have been commonly used in traditional medicine to prevent fatigue or inflammation. In this study, we investigated whether KCHO-1 administration could reduce oxidative stress in an ALS model. KCHO-1 administered to ALS model mice improved motor function and delayed disease onset. Furthermore, KCHO-1 administration reduced oxidative stress through gp91(phox) and the MAPK pathway in both classically activated microglia and the spinal cord of hSOD1(G93A) transgenic mice. The results suggest that KCHO-1 can function as an effective therapeutic agent for ALS by reducing oxidative stress.


Sujets)
Animaux , Souris , Sclérose latérale amyotrophique , Système nerveux central , Éthanol , Fatigue , Inflammation , Médecine traditionnelle , Souris transgéniques , Microglie , Modèles animaux , Motoneurones , Maladies neurodégénératives , Névroglie , Stress oxydatif , Moelle spinale , Superoxide dismutase
SÉLECTION CITATIONS
Détails de la recherche