Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
1.
The Korean Journal of Internal Medicine ; : 397-406, 2018.
Article Dans Anglais | WPRIM | ID: wpr-713532

Résumé

BACKGROUND/AIMS: To define the effect of statins on interleukin 1β (IL-1β)-induced osteoclastogenesis and elucidate the underlying mechanisms. METHODS: Bone marrow cells were obtained from 5-week-old male ICR (Institute for Cancer Research) mice, and they were cultured to differentiate them into osteoclasts with macrophage colony-stimulating factor and the receptor activator of nuclear factor (NF)-κB ligand in the presence or absence of IL-1β or atorvastatin. The formation of osteoclasts was evaluated by tartrate-resistant acid phosphatase (TRAP) staining and resorption pit assay with dentine slice. The molecular mechanisms of the effects of atorvastatin on osteoclastogenesis were investigated using reverse transcription polymerase chain reaction and immunoblotting for osteoclast specific molecules. RESULTS: Atorvastatin significantly reduced the number of TRAP-positive multinucleated cells as well as the bone resorption area. Atorvastatin also downregulated the expression of the NF of activated T-cell c1 messenger RNA and inhibited the expression of osteoclast-specific genes. A possible underlying mechanism may be that atorvastatin suppresses the degradation of the inhibitors of NF-κB and blocks the activation of the c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38; thus, implicating the NF-κB and mitogen-activated protein kinases pathway in this process. CONCLUSIONS: Atorvastatin is a strong inhibitor of inflammation-induced osteoclastogenesis in inflammatory joint diseases.


Sujets)
Animaux , Humains , Mâle , Souris , Acid phosphatase , Atorvastatine , Cellules de la moelle osseuse , Résorption osseuse , Dentine , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase , Immunotransfert , Interleukines , JNK Mitogen-Activated Protein Kinases , Maladies articulaires , Facteur de stimulation des colonies de macrophages , Mitogen-Activated Protein Kinases , Ostéoclastes , Ostéoprotégérine , Phosphotransferases , Réaction de polymérisation en chaîne , Transcription inverse , ARN messager , Lymphocytes T
SÉLECTION CITATIONS
Détails de la recherche