Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Indian J Med Microbiol ; 2019 Jun; 37(2): 173-185
Article | IMSEAR | ID: sea-198881

Résumé

Context: Vancomycin-intermediate Staphylococcus aureus remains one of the most prevalent multidrug-resistant pathogens causing healthcare infections that are difficult to treat. Aims: This study uses a comprehensive computational analysis to systematically investigate various gene expression profiles of resistant and sensitive S. aureus strains on exposure to antibiotics. Settings and Design: The transcriptional changes leading to the development of multiple antibiotic resistance were examined by an integrative analysis of nine differential expression experiments under selected conditions of vancomycin-intermediate and -sensitive strains for four different antibiotics using publicly available RNA-Seq datasets. Materials and Methods: For each antibiotic, three experimental conditions for expression analysis were selected to identify those genes that are particularly involved in the development of resistance. The results were further scrutinised to generate a resistome that can be analysed for their role in the development or adaptation to antibiotic resistance. Results: The 99 genes in the resistome are then compiled to create a multiple drug resistome of 25 known and novel genes identified to play a part in antibiotic resistance. The inclusion of agr genes and associated virulence factors in the identified resistome supports the role of agr quorum sensing system in multiple drug resistance. In addition, enrichment analysis also identified the kyoto encyclopedia of genes and genomes (KEGG) pathways – quorum sensing and two-component system pathways – in the resistome gene set. Conclusion: Further studies on understanding the role of the identified molecular targets such as SAA6008_00181, SAA6008_01127, agrA, agrC and coa in adapting to the pressure of antibiotics at sub-inhibitory concentrations can help in learning the molecular mechanisms causing resistance to the pathogens as well as finding other potential therapeutics.

SÉLECTION CITATIONS
Détails de la recherche