Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres








Gamme d'année
1.
Article | IMSEAR | ID: sea-230118

RÉSUMÉ

The study investigated the potential of sand and activated charcoal filtration systems to enhance water quality for irrigation by treating aerated sewage effluent from. Setup involved a 60 cm deep sand filter connected as the inlet to another 30 cm deep sand filter and this filter linked as the inlet to a 30 cm deep charcoal filter. These filters were operated in series at hydraulic loading rates (HLR) of 60 m/h and 10 m/h. Notably, operating the filters in series at an HLR of 10 m/h yielded superior effluent water quality compared to an HLR of 60 m/h. System achieved significant removal efficiencies for turbidity, BOD5, COD, Total Nitrogen (Total-N), Total Phosphorous (Total-P) with 71.9%, 54.4%, 71.9%, 44.4%, 39.1%, and 42.9% with a 90 cm deep sand filter at an HLR of 10 m/h, and also with a combination of sand and charcoal filters at an HLR of 25 m/h system achieved 81.6%, 80.3%, 63.5%, 47.5%, and 64.3% respectively. We also examined the chemical characteristics of both untreated and treated sewage water samples, revealing a hierarchy of cation and anion prevalence as follows: Na+ > Ca2+ > Mg2+ > K+ for cations, and Cl- > HCO3- > SO42- > CO32- for anions. Our study demonstrates that the combination of aeration and sand filtration effectively ensures safety by preventing water body pollution and unpleasant odours with high-quality treated wastewater suitable for sustainable agricultural use.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE