Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Indian J Exp Biol ; 2016 June; 54(6):414-419
Article Dans Anglais | IMSEAR | ID: sea-178765

Résumé

Lignin is the second most abundant renewable biopolymer on earth after cellulose. It is being used in many industrial applications due to its abundance. In the present study, lignin was isolated from the stems of Leucaena leucocephala (Lam.) de Wit., a high biomass yielding plant using acidic dioxane under N2 atmosphere. Structural characterization of isolated dioxane lignin (DL) was performed by analytical techniques: UV, FT-IR, 1H NMR and 13C NMR. Their monolignol content was determined by nitrobenzene oxidation followed by HPLC-MS/MS analysis. The data was compared with commercial alkali lignin (AL). The results showed that DL is of hardwood guaiacyl-syringyl (GS) type, whereas AL is softwood type with more guaiacyl units and trace amounts of p-hydroxyphenyl units (H). Thermogravimetric analysis (TGA) of DL showed two stage thermal degradation profile similar to AL. The DTGmax for DL and AL were found in the second major loss event of second stage of TGA at 424°C and 404°C, respectively. Differential scanning calorimetry (DSC) study exhibited the glass transition temperatures (Tg) at 132°C and 122°C for DL and AL, respectively. The results from thermal stability studies suggest that dioxane lignin isolated from the "miracle tree" (subabul) can be exploited in various thermoplastic industrial applications.

SÉLECTION CITATIONS
Détails de la recherche