Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Braz. arch. biol. technol ; 56(2): 223-236, Mar.-Apr. 2013. ilus, graf, tab
Article Dans Anglais | LILACS | ID: lil-675640

Résumé

The present study was performed to design and evaluate the famotidine loaded mucoadhesive nanosuspension for aspirin induced ulcer. A 3-factor, 3-level Box-Behnken design was applied to study the effects of amount of the beads (X1), PVPK-30(X2) and Tween-80 (X3) on the particle size (Y1), and cumulative percentage drug released after 1h (Y2). The optimization was performed using the desirability function and contour plots. The scanning electron microscopy (SEM) showed the nanoparticles as spherical in shape. The differential scanning calorimetry (DSC) analysis indicated that there was substantial crystallinity change in the nanoparticle compared with the pure drug. Ex-vivo mucoadhesion study showed that famotidine mucoadhesive nanoparticles possessed higher mucoadhesion than the famotidine nanoparticles. The in vivo studies on aspirin-induced rats indicated the lowering in ulcer index for famotidine mucoadhesive nanoparticles was 0.46+0.011, which was significantly better than the effect of traditional famotidine suspension (0.66+0.035). Famotidine mucoadhesive nanosuspension could be prepared using the media milling technique and allowing significant reduction in ulcer index compared to famotidine suspension.

2.
Braz. arch. biol. technol ; 53(5): 1073-1085, Sept.-Oct. 2010. ilus, tab
Article Dans Anglais | LILACS | ID: lil-564083

Résumé

The purpose of this study was formulation and in vitro evaluation of floating-bioadhesive tablets to lengthen the stay of glipizide in its absorption area. Effervescent tablets were made using chitosan (CH), hydroxypropyl methylcellulose (HPMC), carbopolP934 (CP), polymethacrylic acid (PMA), citric acid, and sodium bicarbonate. Tablets with 5 percent effervescent base had longer lag time than 10 percent. The type of polymer had no significant effect on the floating lag time. All tablets floated atop the medium for 23-24 hr. Increasing carbopolP934 caused higher bioadhesion than chitosan (p < 0.05). All formulations showed a Higuchi, non-Fickian release mechanism. Tablets with 10 percent effervescent base, 80 percent CH/20 percent HPMC, or 80 percent CP/20 percent PMA seemed desirable.

SÉLECTION CITATIONS
Détails de la recherche