Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
1.
Arch. argent. pediatr ; 114(1): 44-51, feb. 2016. graf, tab
Article de Anglais, Espagnol | LILACS, BINACIS | ID: biblio-838164

RÉSUMÉ

Introducción. Detectar menores en riesgo de no pasar la Prueba Nacional de Pesquisa del Desarrollo, combinando prevalencias de sospechosos de padecer trastornos inaparentes del desarrollo (STID) y factores de riesgo (FR) asociados, permitiría ahorrar recursos. Objetivos. 1. Estimar la prevalencia de STID. 2. Identificar FR asociados. 3. Evaluar tres métodos, desarrollados a partir de los FR hallados, para proponer un procedimiento prepesquisa. Materiales y métodos. Se administró la Prueba Nacional de Pesquisa del Desarrollo a 60 menores, de entre 2 y 4 años, de un área socioeconómicamente desfavorecida de Puerto Madryn, elegidos de modo aleatorio. Se evaluaron 24 variables biológicas y socioambientales para identificar posibles FR mediante los enfoques bivariado y multivariado. La probabilidad de no pasar la pesquisa se estimó de la siguiente manera: 1. construyendo unmodelo multivariado de regresión logística; 2. relacionando el número de FR presentes en cada menor con el porcentaje de quienes no pasaron la prueba; 3. integrando los métodos anteriores. Resultados. La prevalencia de STID fue 55,0% (IC 95%: 42,4%-67,6%). Mediante el enfoque bivariado, se identificaron preliminarmente seis FR. Tres de ellos, instrucción materna, número de controles en salud y puntajes Z-talla/edad, más edad materna, fueron incluidos en el modelo de regresión logística con mayor poder explicativo. El tercero de los métodos evaluados presentó las mayores sensibilidad y especificidad (85% y 79%, respectivamente). Conclusiones. La prevalencia estimada de STID fue cuatro veces superior a la del estándar nacional. Se identificaron siete FR. La integración del análisis del efecto acumulativo de los FR y un modelo multivariado proveen una sólida base para el desarrollo de un procedimiento prepesquisa sensible, específico y práctico en zonas desfavorecidas socioeconómicamente.


Introduction. Identifying children at risk of failing the National Developmental Screening Test by combining prevalences of children suspected of having inapparent developmental disorders (IDDs) and associated risk factors (RFs) would allow to save resources. Objectives. 1. To estimate the prevalence of children suspected of having IDDs. 2. To identify associated RFs. 3. To assess three methods developed based on observed RFs and propose a pre-screening procedure. Materials and Methods. The National Developmental Screening Test was administered to 60 randomly selected children aged between 2 and 4 years old from a socioeconomically disadvantaged area from Puerto Madryn. Twenty-four biological and socioenvironmental outcome measures were assessed in order to identify potential RFs using bivariate and multivariate analyses. The likelihood of failing the screening test was estimated as follows: 1. a multivariate logistic regression model was developed; 2. a relationship was established between the number of RFs present in each child and the percentage of children who failed the test; 3. these two methods were combined. Results. The prevalence of children suspected of having IDDs was 55.0% (95% confidence interval: 42.4%-67.6%). Six RFs were initially identified using the bivariate approach. Three of them (maternal education, number of health checkups and Z scores for height-for-age, and maternal age) were included in the logistic regression model, which has a greater explanatory power. The third method included in the assessment showed greater sensitivity and specificity (85% and 79%, respectively). Conclusions. The estimated prevalence of children suspected of having IDDs was four times higher than the national standards. Seven RFs were identified. Combining the analysis of risk factor accumulation and a multivariate model provides a firm basis for developing a sensitive, specific and practical pre-screening procedure for socioeconomically disadvantaged areas.


Sujet(s)
Humains , Enfant d'âge préscolaire , Incapacités de développement/diagnostic , Dépistage de masse , Prévalence , Facteurs de risque , Populations vulnérables
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE