Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
An. acad. bras. ciênc ; 74(2): 285-295, June 2002. graf
Article Dans Anglais | LILACS | ID: lil-314021

Résumé

The roughest-irregular chiasm C ( rst-irreC) gene of Drosophila melanogaster encodes a transmembrane glycoprotein containing five immunoglobulin-like domains in its extracellular portion and an intracytoplasmic tail rich in serine and threonine as well some conserved motifs suggesting signal transduction activity. In the compound eye, loss-of-function rst-irreC mutants lack the characteristic wave of programmed cell death happening in early pupa and which is essential for the elimination of the surplus interommatidial cells. Here we report an investigation on the role played by the Rst-irreC molecule in triggering programmed cell death. "In vivo" transient expression assays showed that deletion of the last 80 amino acids of the carboxyl terminus produces a form of the protein that is highly toxic to larvae. This toxicity is suppressed if an additional 47 amino acid long, glutamine-rich region ("opa-like domain"), is also removed from the protein. The results suggest the possibility that the opa-like domain and the carboxyl terminus act in concert to modulate rst-irreC function in apoptosis, and we discuss this implication in the context of the general mechanisms causing glutamine-rich neurodegenerative diseases in humans


Sujets)
Animaux , Femelle , Drosophila , Protéines de Drosophila/toxicité , Glutamine , Acides aminés , Mort cellulaire , Drosophila , Protéines de Drosophila/composition chimique , Protéines de Drosophila/génétique , Protéines de Drosophila/physiologie , Larve
2.
Medicina (Ribeiräo Preto) ; 32(2): 167-88, abr.-jun. 1999. ilus, tab
Article Dans Portugais | LILACS | ID: lil-272867

Résumé

O Sistema Nervoso Central produz o nosso estado consciente mediante um contínuo fluxo de informaçöes e armazenamento de memórias ao longo da vida, a partir de diferentes estímulos externos. Ao mesmo tempo, controla a concentraçäo dos nossos fluidos internos e o trabalho de músculos e glândulas. A transmissäo sináptica é o processo básico de toda esta atividade. Bilhöes de neurônios se comunicam entre si via milhares de sinapses, e cada sinapse, por sua vez, é uma estrutura regulada independentemente. A partir desta complexidade, em lugar de caos, surge uma singular ordem na informaçäo processada pelo cérebro. A secreçäo de neurotransmissores na zona ativa da sinapse é o evento primário da comunicaçäo interneuronal. Este processo é regulado por um tráfego de membranas altamente orquestrado dentro do terminal pré-sináptico. Os neurotransmissores säo armazenados em vesículas sinápticas. A despolarizaçäo de um terminal nervoso por um potencial de açäo resulta na abertura de canais de cálcio, operados por voltagem. O influxo do Ca²+ resultante deflagra a exocitose, que é uma rápida fusäo de vesículas com a membrana plasmática, liberando neurotransmissores para a fenda sináptica. A exocitose envolve a junçäo de proteínas intrínsecas das membranas plasmáticas, vesicular e pré-sináptica, mediante proteínas específicas de ancoragem e fusäo na zona ativa (SNARE). Em seguida à liberaçäo, as membranas das vesículas säo rapidamente reincorporadas via endocitose e recicladas dentro do terminal sináptico. O terminal é, portanto, uma unidade autônoma que contém todos os elementos requeridos para a exocitose das vesículas, as proteínas responsáveis pela biossíntese do neurotransmissor e recaptaçäo das vesículas. Uma vez liberado, o neurotransmissor difunde através da fenda sináptica e interage com proteínas receptoras na membrana do neurônio pós-sináptico produzindo, em uma fraçäo de milissegundo, uma permeabilidade intensa e temporária aos íons Na+ e K+, provocando a despolarizaçäo total de cerca de 100 mV desde um potencial de repouso em torno de -60mV. Isto gera um potencial de açäo que se difunde ao longo da membrana do neurônio pós-sináptico, podendo alcançar o seu próprio terminal e deflagrar novo movimento de Ca²+ para o citosol, gerando um novo potencial. Várias proteínas dentro do terminal pós-sináptico estäo envolvidas neste processo.


Sujets)
Humains , Animaux , Synapses , Vésicules synaptiques , Potentialisation à long terme , Protéines , Transmission synaptique
SÉLECTION CITATIONS
Détails de la recherche