Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Protein & Cell ; (12): 981-981, 2018.
Article Dans Anglais | WPRIM | ID: wpr-757941

Résumé

In the original publication, the funding information was incorrectly published. The correct funding information is provided in this correction. This work is supported by grants from the Projects of International Cooperation and Exchanges Ministry of Science and Technology of China (2013DFG32390) and the National Natural Science Foundation of China (31472059) to X.S. X.S is a recipient of the Young Thousand Talents program (KJ2070000026).

2.
Protein & Cell ; (12): 236-249, 2016.
Article Dans Anglais | WPRIM | ID: wpr-757134

Résumé

Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks (DSBs) made by the Spo11 protein. The present study shed light on the functional role of cyclin, CYC2, in Tetrahymena thermophila which has transcriptionally high expression level during meiosis process. Knocking out the CYC2 gene results in arrest of meiotic conjugation process at 2.5-3.5 h after conjugation initiation, before the meiosis division starts, and in company with the absence of DSBs. To investigate the underlying mechanism of this phenomenon, a complete transcriptome profile was performed between wild-type strain and CYC2 knock-out strain. Functional analysis of RNA-Seq results identifies related differentially expressed genes (DEGs) including SPO11 and these DEGs are enriched in DNA repair/mismatch repair (MMR) terms in homologous recombination (HR), which indicates that CYC2 could play a crucial role in meiosis by regulating SPO11 and participating in HR.


Sujets)
Points de contrôle du cycle cellulaire , Cyclines , Génétique , Métabolisme , Cassures double-brin de l'ADN , Réparation de mésappariement de l'ADN , Réparation de l'ADN , Endodeoxyribonucleases , Génétique , Métabolisme , Recombinaison homologue , Méiose , Microscopie de fluorescence , Phénotype , Protéines de protozoaire , Génétique , Métabolisme , Réaction de polymérisation en chaine en temps réel , Analyse de séquence d'ARN , Tetrahymena thermophila , Génétique , Métabolisme , Transcriptome
3.
Protein & Cell ; (12): 241-253, 2015.
Article Dans Anglais | WPRIM | ID: wpr-757601

Résumé

Cells can adapt to environment and development by reconstructing their transcriptional networks to regulate diverse cellular processes without altering the underlying DNA sequences. These alterations, namely epigenetic changes, occur during cell division, differentiation and cell death. Numerous evidences demonstrate that epigenetic changes are governed by various types of determinants, including DNA methylation patterns, histone posttranslational modification signatures, histone variants, chromatin remodeling, and recently discovered chromosome conformation characteristics and non-coding RNAs (ncRNAs). Here, we highlight recent efforts on how the two latter epigenetic factors participate in the sophisticated transcriptional process and describe emerging techniques which permit us to uncover and gain insights into the fascinating genomic regulation.


Sujets)
Humains , Mort cellulaire , Différenciation cellulaire , Division cellulaire , Chromatine , Chimie , Métabolisme , Assemblage et désassemblage de la chromatine , Méthylation de l'ADN , Épigenèse génétique , Cellules eucaryotes , Biologie cellulaire , Métabolisme , Histone , Génétique , Métabolisme , Maturation post-traductionnelle des protéines , ARN non traduit , Génétique , Métabolisme , Transcription génétique
SÉLECTION CITATIONS
Détails de la recherche