Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Braz. j. microbiol ; 42(2): 616-623, Apr.-June 2011. graf, tab
Article Dans Anglais | LILACS | ID: lil-590008

Résumé

This study aimed to verify the biological efficiency and production flushes of Agaricus blazei strains on different casing layers during 90 cultivation days. Four casing layers were used: mixture of subsoil and charcoal (VCS), lime schist (LSC), São Paulo peat (SPP) and Santa Catarina peat (SCP); and two genetically distant A. blazei strains. The fungus was grown in composted substratum and, after total colonization, a pasteurized casing layer was added over the substratum, and fructification was induced. Mushrooms were picked up daily when the basidiocarp veil was stretched, but before the lamella were exposed. The biological efficiency (BE) was determined by the fresh basidiocarp mass divided by the substratum dry mass, expressed in percentage. The production flushes were also determined over time production. The BE and production flushes during 90 days were affected by the strains as well as by the casing layers. The ABL26 and LSC produced the best BE of 60.4 percent. Although VCS is the most used casing layer in Brazil, it is inferior to other casing layers, for all strains, throughout cultivation time. The strain, not the casing layer, is responsible for eventual variations of the average mushroom mass. In average, circa 50 percent of the mushroom production occurs around the first month, 30 percent in the second month, and 20 percent in third month. The casing layer water management depends on the casing layer type and the strain. Production flush responds better to water reposition, mainly with ABL26, and better porosity to LSC and SCP casing layers.

2.
Ciênc. rural ; 40(7): 1660-1663, jul. 2010. ilus, tab
Article Dans Portugais | LILACS | ID: lil-557036

Résumé

A escolha da camada de cobertura é uma das mais importantes etapas do cultivo de Agaricus brasiliensis. Apesar dessa importância, poucos estudos relatam o uso de diferentes tratamentos térmicos para o controle da microbiota em camadas de cobertura alternativas. Assim, o objetivo deste trabalho foi avaliar o efeito da pasteurização e da autoclavagem do material alternativo calxisto para utilização como camada de cobertura no cultivo de A. brasiliensis. O fungo foi inicialmente crescido em grãos de trigo e transferido para meio de cultivo previamente compostado. Após a completa colonização, a camada de cobertura (calxisto) pasteurizada ou autoclavada foi adicionada. Avaliaram-se a eficiência biológica, o número e a biomassa de cogumelos produzidos e o fluxo de produção. Concluiu-se que a camada de cobertura com calxisto autoclavado reduzem o tempo de produção, a eficiência biológica e o número e a biomassa de cogumelos cultivados. Entretanto, a camada de cobertura com o calxisto pasteurizado é a mais eficiente para o cultivo de A. brasiliensis.


Casing layer choice is one of the most important phases on Agaricus brasiliensis cultivation. Besides the importance of it few studies report the use of different heat treatments to control the microbiota in alternative casing layers. Thus, the objective of this work was to evaluate the effect of pasteurized or autoclaved lime schist as an alternative casing layer on A. brasiliensis cultivation. The fungus was previously grown on wheat grains and transferred to a substratum previously composted. After substratum mycelium colonization a pasteurized or autoclaved lime schist casing layer was added on. It was evaluated the biological efficiency, the number and mass of produced mushroom and the production flush along cultivation. It was concluded that autoclaved lime schist casing layer decreases period of production, biological efficiency, number and mass of cultivated mushrooms. However pasteurized lime schist casing layer is the most efficient on A. brasiliensis cultivation.

SÉLECTION CITATIONS
Détails de la recherche