Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
1.
Experimental & Molecular Medicine ; : 596-603, 2011.
Article Dans Anglais | WPRIM | ID: wpr-131290

Résumé

The homing properties of adipose tissue-derived mesenchymal stem cells (AdMSCs) have stimulated intravenous applications for their use in stem cell therapy. However, the soluble factors and corresponding cellular receptors responsible for inducing chemotaxis of AdMSCs have not yet been reported. In the present study, the migration capacity of human AdMSCs (hAdMSCs) toward various cytokines or growth factors (GFs) and the expression of their receptors were determined. In a conventional migration assay, PDGF-AB, TGF-beta1, and TNF-alpha showed the most effective chemoattractant activity. When AdMSCs were preincubated with various chemokines or GF, and then allowed to migrate toward medium containing 10% FBS, those preincubated with TNF-alpha showed the highest migratory activity. Next, hAdMSCs were either preincubated or not with TNF-alpha, and allowed to migrate in response to various GFs or chemokines. Prestimulation with TNF-alpha increased the migration activity of hAdMSCs compared to unstimulated hAdMSCs. When analyzed by FACS and RT-PCR methods, hAdMSCs were found to express C-C chemokine receptor type 1 (CCR1), CCR7, C-X-C chemokine receptor type 4 (CXCR4), CXCR5, CXCR6, EGF receptor, fibroblast growth factor receptor 1, TGF-beta receptor 2, TNF receptor superfamily member 1A, PDGF receptor A and PDGF receptor B at both the protein and the mRNA levels. These results indicate that the migration capacity of hAdMSCs is controlled by various GFs and chemokines. Prior in vitro modulation of the homing capacity of hAdMSCs could stimulate their movement into injured sites in vivo when administered intravenously, thereby improving their therapeutic potential.


Sujets)
Humains , Tissu adipeux/cytologie , Mouvement cellulaire/effets des médicaments et des substances chimiques , Séparation cellulaire , Cellules cultivées , Cytométrie en flux , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Transplantation de cellules souches mésenchymateuses , Cellules souches mésenchymateuses/cytologie , Récepteurs aux chimiokines/génétique , Récepteur facteur croissance/génétique , Facteur de nécrose tumorale alpha/pharmacologie
2.
Experimental & Molecular Medicine ; : 596-603, 2011.
Article Dans Anglais | WPRIM | ID: wpr-131287

Résumé

The homing properties of adipose tissue-derived mesenchymal stem cells (AdMSCs) have stimulated intravenous applications for their use in stem cell therapy. However, the soluble factors and corresponding cellular receptors responsible for inducing chemotaxis of AdMSCs have not yet been reported. In the present study, the migration capacity of human AdMSCs (hAdMSCs) toward various cytokines or growth factors (GFs) and the expression of their receptors were determined. In a conventional migration assay, PDGF-AB, TGF-beta1, and TNF-alpha showed the most effective chemoattractant activity. When AdMSCs were preincubated with various chemokines or GF, and then allowed to migrate toward medium containing 10% FBS, those preincubated with TNF-alpha showed the highest migratory activity. Next, hAdMSCs were either preincubated or not with TNF-alpha, and allowed to migrate in response to various GFs or chemokines. Prestimulation with TNF-alpha increased the migration activity of hAdMSCs compared to unstimulated hAdMSCs. When analyzed by FACS and RT-PCR methods, hAdMSCs were found to express C-C chemokine receptor type 1 (CCR1), CCR7, C-X-C chemokine receptor type 4 (CXCR4), CXCR5, CXCR6, EGF receptor, fibroblast growth factor receptor 1, TGF-beta receptor 2, TNF receptor superfamily member 1A, PDGF receptor A and PDGF receptor B at both the protein and the mRNA levels. These results indicate that the migration capacity of hAdMSCs is controlled by various GFs and chemokines. Prior in vitro modulation of the homing capacity of hAdMSCs could stimulate their movement into injured sites in vivo when administered intravenously, thereby improving their therapeutic potential.


Sujets)
Humains , Tissu adipeux/cytologie , Mouvement cellulaire/effets des médicaments et des substances chimiques , Séparation cellulaire , Cellules cultivées , Cytométrie en flux , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Transplantation de cellules souches mésenchymateuses , Cellules souches mésenchymateuses/cytologie , Récepteurs aux chimiokines/génétique , Récepteur facteur croissance/génétique , Facteur de nécrose tumorale alpha/pharmacologie
SÉLECTION CITATIONS
Détails de la recherche