Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres








Gamme d'année
1.
Natural Product Sciences ; : 181-199, 2019.
Article de Anglais | WPRIM | ID: wpr-760573

RÉSUMÉ

Angelica decursiva Fr. et Sav. (Umbelliferae) has traditionally been used to treat different diseases due to its antitussive, analgesic, and antipyretic activities. It is also a remedy for thick phlegm, asthma, and upper respiratory infections. Recently, the leaf of A. decursiva has been consumed as salad without showing any toxicity. This plant is a rich in different types of coumarin derivatives, including dihydroxanthyletin, psoralen, dihydropsoralen, hydroxycoumarin, and dihydropyran. Its crude extracts and pure constituents possess anti-inflammatory, anti-diabetic, anti-Alzheimer disease, anti-hypertension, anti-cancer, antioxidant, anthelmintic, preventing cerebral stroke, and neuroprotective activities. This valuable herb needs to be further studied and developed not only to treat these human diseases, but also to improve human health. This review provides an overview of current knowledge of A. decursiva metabolites and their biological activities to prioritize future studies.


Sujet(s)
Humains , Angelica , Apiaceae , Asthme , Mélanges complexes , Coumarines , Ethnobotanique , Psoralène , Pharmacologie , Plantes , Infections de l'appareil respiratoire , Accident vasculaire cérébral
2.
Article de Anglais | WPRIM | ID: wpr-820308

RÉSUMÉ

OBJECTIVE@#To use structure-activity analysis to study the anti-Alzheimer's disease (anti-AD) activity of natural coumarins isolated from Angelica decursiva and Artemisia capillaris, along with one purchased coumarin (daphnetin).@*METHODS@#Umbelliferone, umbelliferone 6-carboxylic acid, scopoletin, isoscopoletin, 7-methoxy coumarin, scoparone, scopolin, and esculetin have been previously isolated; however 2'-isopropyl psoralene was isolated from Angelica decursiva for the first time to evaluate their inhibitory effects against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) enzyme activity. We scrutinized the potentials of coumarins as cholinesterase and BACE1 inhibitors via enzyme kinetics and molecular docking simulation.@*RESULTS@#Among the test compounds, umbelliferone 6-carboxylic acid, esculetin and daphnetin exhibited potent inhibitory activity against AChE, BChE and BACE1. Both esculetin and daphnetin have a catechol group and exhibit significant anti-AD activity against AChE and BChE. In contrast, presence of a sugar moiety and methoxylation markedly reduced the anti-AD activity of the coumarins investigated in this study. With respect to BACE1 inhibition, umbelliferone 6-carboxylic acid, esculetin and daphnetin contained carboxyl or catechol groups, which significantly contributed to their anti-AD activities. To further investigate these results, we generated a 3D structure of BACE1 using Autodock 4.2 and simulated binding of umbelliferone 6-carboxylic acid, esculetin and daphnetin. Docking simulations showed that different residues of BACE1 interacted with hydroxyl and carboxylic groups, and the binding energies of umbelliferone 6-carboxylic acid, esculetin and daphnetin were negative (-4.58, -6.25 and -6.37 kcal/mol respectively).@*CONCLUSIONS@#Taken together, our results suggest that umbelliferone 6-carboxylic acid, esculetin and daphnetin have anti-AD effects by inhibiting AChE, BChE and BACE1, which might be useful against AD.

3.
Article de Chinois | WPRIM | ID: wpr-951466

RÉSUMÉ

Objective: To use structure-activity analysis to study the anti-Alzheimer's disease (anti-AD) activity of natural coumarins isolated from Angelica decursiva and Artemisia capillaris, along with one purchased coumarin (daphnetin). Methods: Umbelliferone, umbelliferone 6-carboxylic acid, scopoletin, isoscopoletin, 7-methoxy coumarin, scoparone, scopolin, and esculetin have been previously isolated; however 2'-isopropyl psoralene was isolated from Angelica decursiva for the first time to evaluate their inhibitory effects against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) enzyme activity. We scrutinized the potentials of coumarins as cholinesterase and BACE1 inhibitors via enzyme kinetics and molecular docking simulation. Results: Among the test compounds, umbelliferone 6-carboxylic acid, esculetin and daphnetin exhibited potent inhibitory activity against AChE, BChE and BACE1. Both esculetin and daphnetin have a catechol group and exhibit significant anti-AD activity against AChE and BChE. In contrast, presence of a sugar moiety and methoxylation markedly reduced the anti-AD activity of the coumarins investigated in this study. With respect to BACE1 inhibition, umbelliferone 6-carboxylic acid, esculetin and daphnetin contained carboxyl or catechol groups, which significantly contributed to their anti-AD activities. To further investigate these results, we generated a 3D structure of BACE1 using Autodock 4.2 and simulated binding of umbelliferone 6-carboxylic acid, esculetin and daphnetin. Docking simulations showed that different residues of BACE1 interacted with hydroxyl and carboxylic groups, and the binding energies of umbelliferone 6-carboxylic acid, esculetin and daphnetin were negative (-4.58, -6.25 and -6.37 kcal/mol respectively). Conclusions: Taken together, our results suggest that umbelliferone 6-carboxylic acid, esculetin and daphnetin have anti-AD effects by inhibiting AChE, BChE and BACE1, which might be useful against AD.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE