Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Protein & Cell ; (12): 203-213, 2014.
Article Dans Anglais | WPRIM | ID: wpr-757501

Résumé

The insulin receptor (IR) is an important hub in insulin signaling and its activation is tightly regulated. Upon insulin stimulation, IR is activated through autophosphorylation, and consequently phosphorylates several insulin receptor substrate (IRS) proteins, including IRS1-6, Shc and Gab1. Certain adipokines have also been found to activate IR. On the contrary, PTP, Grb and SOCS proteins, which are responsible for the negative regulation of IR, are characterized as IR inhibitors. Additionally, many other proteins have been identified as IR substrates and participate in the insulin signaling pathway. To provide a more comprehensive understanding of the signals mediated through IR, we reviewed the upstream and downstream signal molecules of IR, summarized the positive and negative modulators of IR, and discussed the IR substrates and interacting adaptor proteins. We propose that the molecular events associated with IR should be integrated to obtain a better understanding of the insulin signaling pathway and diabetes.


Sujets)
Animaux , Humains , Liaison aux protéines , Récepteur à l'insuline , Métabolisme , Transduction du signal , Spécificité du substrat
2.
Protein & Cell ; (12): 286-298, 2013.
Article Dans Anglais | WPRIM | ID: wpr-757811

Résumé

The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.


Sujets)
Animaux , Humains , Rats , Encéphale , Métabolisme , Calcium , Métabolisme , Cellules cultivées , Cervelet , Biologie cellulaire , Transfert d'énergie par résonance de fluorescence , Cellules HEK293 , Monoxyde d'azote , Métabolisme , Nitric oxide synthase type I , Métabolisme , Domaines PDZ , Plasma Membrane Calcium-Transporting ATPases , Métabolisme , Cartes d'interactions protéiques , Isoformes de protéines , Métabolisme , Rat Sprague-Dawley
3.
Progress in Biochemistry and Biophysics ; (12): 81-85, 2001.
Article Dans Chinois | WPRIM | ID: wpr-411765

Résumé

With redox-sensitive fluorescene probes DCFH-DA and DHR123, the formation of cytosolic and intramitochondrial reactive oxygen species (ROS) inside immature rat cerebellar granule cells during the apoptosis induced by nitric oxide donor S-nitroso-N-acetyl-pennicillamine (SNAP) was monitored by laser confocal scanning microscopy. The cytosolic and intramitochondrial ROS increase significantly after 0.5 mmol/L SNAP treatment for 1 h. Pre-treatment with the nitric oxide scavenger hemoglobin can effectively inhibit the formation of cytosolic and intrarnitochondrial ROS and protect neurons from apoptosis. Adding glutathione can also protect neurons from apoptosis, and the cytotoxity of nitric oxide increases significantly while the synthesis of glutathione is inhibited. The results indicated that ROS might be involved in NO-induced apoptosis in neural cells and glutathione might be the endogenesis antioxidant to protect neurons from oxidative injury.

SÉLECTION CITATIONS
Détails de la recherche