Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Electron. j. biotechnol ; 27: 55-62, May. 2017. tab, graf
Article Dans Anglais | LILACS | ID: biblio-1010296

Résumé

Background: To reduce costs associated with productivity of recombinant proteins in the biopharmaceutical industry, research has been focused on regulatory principals of growth and survival during the production phases of the cell culture. The main strategies involve the regulation of cell proliferation by the modulation of cell cycle control points (G1/S or G2/M) with mild hypothermia and the addition of sodium butyrate (NaBu). In this study, batch culture strategies were evaluated using CHO TF 70R cells producing the recombinant human tissue plasminogen activator (rh-tPA), to observe their individual and combined effect on the cellular physiological state and relevant kinetic parameters. Results: NaBu addition has a negative effect on the mitochondrial membrane potential (ΔΨm), the values of which are remarkably diminished in cultures exposed to this cytotoxic compound. This effect was not reflected in a loss of cell viability. NaBu and mild hypothermic conditions increased the doubling time in the cell cultures, suggesting that these strategies triggered a general slowing of each cell cycle phase in a different way. Finally, the individual and combined effect of NaBu and mild hypothermia produced an increase in the specific rh-tPA productivity in comparison to the control at 37°C without NaBu. Nevertheless, both strategies did not have a synergistic effect on the specific productivity. Conclusions: The combination of NaBu addition and mild hypothermic condition causes an impact on physiological and metabolic state of CHO TF 70R cells, decreasing cell growth rate and improving glucose consumption efficiency. These results therefore provide a promising strategy to increase specific productivity of rh-tPA.


Sujets)
Protéines recombinantes/métabolisme , Cellules CHO/métabolisme , Activateur tissulaire du plasminogène/métabolisme , Acide butyrique/métabolisme , Hypothermie , Cycle cellulaire , Survie cellulaire , Cellules CHO/physiologie , Activateur tissulaire du plasminogène/biosynthèse , Prolifération cellulaire , Potentiel de membrane mitochondriale
SÉLECTION CITATIONS
Détails de la recherche