Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
J Genet ; 2006 Dec; 85(3): 179-85
Article Dans Anglais | IMSEAR | ID: sea-114237

Résumé

We propose that select retropseudogenes of the high mobility group nonhistone chromosomal protein genes have recently integrated into mammalian genomes on the basis of the high sequence identity of the copies to the cDNA sequences derived from the original genes. These include the Hmg1 gene family in mice and the Hmgn2 family in humans. We investigated orthologous loci of several strains and species of Mus for presence or absence of apparently young Hmg1 retropseudogenes. Three of four analysed elements were specific to Mus musculus, two of which were not fixed, indicative of recent evolutionary origins. Additionally, we datamined a presumptive subfamily (Hmgz) of mouse Hmg1, but only identified one true element in the GenBank database, which is not consistent with a separate subfamily status. Two of four analysed Hmgn2 retropseudogenes were specific for the human genome, whereas a third was identified in human, chimpanzee and gorilla genomes, and a fourth additionally found in orangutan but absent in African green monkey. Flanking target-site duplications were consistent with LINE integration sites supporting LINE machinery for their mechanism of amplification. The human Hmgn2 retropseudogenes were full length, whereas the mouse Hmg1 elements were either full length or 3'-truncated at specific positions, most plausibly the result of use of alternative polyadenylation sites. The nature of their recent amplification success in relation to other retropseudogenes is unclear, although availability of a large number of transcripts during gametogenesis may be a reason. It is apparent that retropseudogenes continue to shape mammalian genomes, and may provide insight into the process of retrotransposition, as well as offer potential use as phylogenetic markers.


Sujets)
Animaux , Clonage moléculaire , Bases de données génétiques , Génome humain , Gorilla gorilla/génétique , Protéines HMG/génétique , Humains , Mammifères/génétique , Souris/génétique , Pan troglodytes/génétique , Réaction de polymérisation en chaîne , Pongo pygmaeus/génétique , Pseudogènes , Analyse de séquence d'ADN , Spécificité d'espèce
SÉLECTION CITATIONS
Détails de la recherche