Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres








Gamme d'année
1.
Rev. bras. eng. biomed ; 22(2): 131-141, ago. 2006. ilus, tab, graf
Article de Anglais | LILACS | ID: lil-587451

RÉSUMÉ

The lack of accurate time-spatial temperature estimators/predictors conditions the safe application of thermal therapies, such as hyperthermia. In this paper, a comparison between a linear and a non-linear class of models for non-invasive temperature prediction in a homogeneous medium, subjected to ultrasound at physiotherapeutic levels is presented. The linear models used were autoregressive with exogenous inputs (ARX) and the non-linear models were radial basis functions neural networks (RBFNN). In order to create and validate the models, an experiment was build to extract in vitro ultrasound RF-lines, as well as its correspondent temperature values. Then, features were extracted from the measured RF-lines and the models were trained and validated. For both the models, the best-fitted structures were selected using the multi-objective genetic algorithm (MOGA), given the enormous number of possible structures. The best RBFNN model presented a maximum absolute predictive error in the validation set five times less than the value presented by the best ARX model. In this work, the best RBFNN reached a maximum absolute error of 0.42 ºC, which is bellow the value pointed as a borderline between an appropriate and an undesired temperature estimator, which is 0.5 ºC. The average error was one order of magnitude less in the RBFNN case, and a less biased estimation was met. In addition, the best RBFNN needed less environmental information(inputs), given the capacity to non-linearly relate the information. The results obtained are encouraging, considering that coherent results should be obtained in a time-spatial modelling schema using RBFNN models.


A falta de estimadores de temperatura espaço-temporais que sejam precisos impede a aplicação segura das terapias térmicas, como por exemplo a hipertermia. Neste artigo é apresentada uma comparação entre uma classe de modelos lineares e uma classe de modelos não lineares, na predição não invasiva de temperatura num meio homogêneo, quando o mesmo é aquecido por ultra-som em níveis usados em fisioterapia. Os modelos lineares considerados foram do tipo auto-regressivo com entradas exógenas (ARX); a nível não-linear foram considerados redes neuronais RBF (RBFNN). Para treinar e validar os modelos foram recolhidas os ecos provenientes do meio, bem como os correspondentes valores de temperatura. Após a colheita de informação, foram extraídas características dos ecos medidos e posteriormente os modelos foram treinados e validados. Para ambas as classes de modelos, as melhores estruturas foram seleccionadas usando um algoritmo genético multi-objectivo (MOGA), devido ao número elevado de estruturas possíveis. O melhor modelo RBFNN apresentou um erro máximo absoluto cinco vezes inferior ao erro máximo absoluto apresentado pelo melhor modelo ARX. Neste trabalho, o melhor modelo RBFNN apresentou um erro máximo absolutode 0,42 ºC, valor este que é inferior ao limite (0,5 ºC) apresentado como sendo a fronteira entre um estimador desejado e um estimador indesejado. O erro médio cometido pelo melhor modelo neuronal é uma ordem de grandeza inferior ao erro médio apresentado pelo melhor modelo linear, obtendo-se deste modo uma estimação menos enviesada no caso das redes neuronais, com menos informação do ambiente (menos entradas) devido ao processamento não-linear dos dados de entrada. Os resultados obtidos são encorajadores, apontando no sentido de se obter bons resultados numa estimação espaço-temporal.


Sujet(s)
Hyperthermie provoquée/instrumentation , Hyperthermie provoquée/méthodes , Hyperthermie provoquée , Modèles linéaires , Dynamique non linéaire , Ultrasonothérapie/instrumentation , Ultrasonothérapie , Calibrage , Techniques de physiothérapie/instrumentation , Techniques de physiothérapie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE