Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Pharmaceutical Analysis ; (6): 597-609, 2020.
Article Dans Chinois | WPRIM | ID: wpr-883491

Résumé

Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification. A dimension-enhanced strategy, by offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spec-trometry (2D-LC/IM-QTOF-MS) enabling four-dimensional separations (2D-LC, IM, and MS), is proposed. In combination with in-house database-driven automated peak annotation, this strategy was utilized to characterize ginsenosides simultaneously from white ginseng (WG) and red ginseng (RG). An offline 2D-LC system configuring an Xbridge Amide column and an HSS T3 column showed orthogonality 0.76 in the resolution of ginsenosides. Ginsenoside analysis was performed by data-independent high-definition MSE (HDMSE) in the negative ESI mode on a Vion TM IMS-QTOF hybrid high-resolution mass spectrometer, which could better resolve ginsenosides than MSE and directly give the CCS information. An in-house ginsenoside database recording 504 known ginsenosides and 58 reference compounds, was estab-lished to assist the identification of ginsenosides. Streamlined workflows, by applying UNIFI TM to auto-matedly annotate the HDMSE data, were proposed. We could separate and characterize 323 ginsenosides (including 286 from WG and 306 from RG), and 125 thereof may have not been isolated from the Panax genus. The established 2D-LC/IM-QTOF-HDMSE approach could also act as a magnifier to probe differ-entiated components between WG and RG. Compared with conventional approaches, this dimension-enhanced strategy could better resolve coeluting herbal components and more efficiently, more reli-ably identify the multicomponents, which, we believe, offers more possibilities for the systematic exposure and confirmative identification of plant metabolites.

SÉLECTION CITATIONS
Détails de la recherche