Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Chinese Journal of Biotechnology ; (12): 1831-1839, 2018.
Article Dans Chinois | WPRIM | ID: wpr-776286

Résumé

Epigenetic modification, especially histone modification, plays an important role in maintaining plant genome stability, regulating gene expression and promoting regeneration in vitro. MtSERK1 is an important marker gene involved in establishing of embryogenic callus during in vitro regeneration of Medicago truncatula. In order to understand the regulation Epigenetic modification, especially histone modification, plays an important role in maintaining plant genome stability, regulating gene expression and promoting regeneration in vitro. MtSERK1 is an important marker gene involved in establishing of embryogenic callus during in vitro regeneration of Medicago truncatula. In order to understand the regulation relationship between dynamic histone modification and MtSERK1s expression during the processes of in vitro organogenesis, the expression of MtSERK1 was analyzed by qRT-PCR, and the modification status of H3K9me2, H3K4me3 and H3K9ac in the promoter region and different regions included in the gene body was analyzed by chromatin immunoprecipitation (ChIP). We found expression activation of MtSERK1 was related to the dynamic changes of histone H3K4me3 and H3K9ac in the 5' and 3' regions. This study will provide important theoretical guidance for understanding of the regulatory mechanism of MtSERK1 and also for establishing efficient genetic transformation system of Medicago truncatula.


Sujets)
Épigenèse génétique , Régulation de l'expression des gènes végétaux , Génome végétal , Code histone , Medicago truncatula , Génétique , Protein kinases , Génétique , Régénération
SÉLECTION CITATIONS
Détails de la recherche