Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Indian J Biochem Biophys ; 2011 Apr; 48(2): 73-81
Article Dans Anglais | IMSEAR | ID: sea-135303

Résumé

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. PPAR-alpha is involved in wound healing, stimulation of lipid and folic acid catabolism, inflammation control, inhibition of ureagenesis and peroxisome proliferation. The PPAR/ is involved wound healing, cell proliferation, embryo implantation, adipocyte differentiation, myelination alteration and apoptosis. The PPAR is involved in fat, lipid and calorie utilization, sugar control, inflammation control and macrophage (MQ) matutation. Homocysteine (Hcy) binds to nuclear peroxisome proliferator activated receptor. Increase in PPAR expression decreases the level of nitrotyrosine and increases endothelial nitric oxide concentration, decreases metalloproteinase activity and expression as well as elastinolysis and reverses Hcy-mediated vascular dysfunction. The PPAR initially recognized as a regulator of adipocyte development has become a potential therapeutic target for the treatment of diverse disorders. In addition, the activation of PPAR receptor ameliorates neurodegenerative disease. This review focuses on the recent knowledge of PPAR in neuroprotection and deals with the mechanism of neuroprotection of central nervous system disorder by PPAR.


Sujets)
Animaux , Encéphalopathie ischémique/métabolisme , Encéphalopathie ischémique/anatomopathologie , Encéphalopathie ischémique/thérapie , Mort cellulaire , Système nerveux central/cytologie , Système nerveux central/métabolisme , Système nerveux central/anatomopathologie , Cytoprotection , Humains , Maladies neurodégénératives/métabolisme , Maladies neurodégénératives/anatomopathologie , Maladies neurodégénératives/thérapie , Neurones/cytologie , Neurones/anatomopathologie , Neuroprotecteurs/métabolisme , Récepteur PPAR gamma/métabolisme
2.
Indian J Biochem Biophys ; 2009 Dec; 46(6): 441-446
Article Dans Anglais | IMSEAR | ID: sea-135227

Résumé

Mitochondrial mechanism of oxidative stress and matrix metalloproteinase (MMP) activation was unclear. Our recent data suggested that MMPs are localized to mitochondria and activated by peroxynitrite, which causes cardiovascular remodeling and failure. Recently, we have demonstrated that elevated levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) increase oxidative stress in the mitochondria. Although HHcy causes heart failure, interestingly, it is becoming very clear that Hcy can generate hydrogen sulfide (H2S), if the enzymes cystathionine β-synthase (CBS) and cystathionine -lyase (CGL) are present. H2S is a strong anti-oxidant and vasorelaxing agent. Paradoxically, it is interesting that Hcy, a precursor of H2S can be cardioprotective. The CGL is ubiquitous, while the CBS is not present in the vascular tissues. Therefore, under normal condition, only half of Hcy can be converted to H2S. However, there is strong potential for gene therapy of CBS to vascular tissue that can mitigate the detrimental effects of Hcy by converting it to H2S. This scenario is possible, if the activities of both the enzymes (CBS and CGL) are increased in tissues by gene therapy.


Sujets)
Animaux , Délétion de gène , Défaillance cardiaque/génétique , Défaillance cardiaque/métabolisme , Défaillance cardiaque/physiopathologie , Homocystéine/métabolisme , Humains , Sulfure d'hydrogène/métabolisme , Contraction myocardique , Récepteurs du N-méthyl-D-aspartate/déficit , Récepteurs du N-méthyl-D-aspartate/génétique , Récepteurs du N-méthyl-D-aspartate/métabolisme
SÉLECTION CITATIONS
Détails de la recherche