Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres








Gamme d'année
1.
J. med. entomol ; J. med. entomol;59(4): 1421-1433, 2022. tab, ilus
Article de Anglais | LILACS, BVSDIP | ID: biblio-1567708

RÉSUMÉ

Chagas disease is endemic in ~70% of Ecuador. Rhodnius ecuadoriensis and Triatoma carrioni (Hemiptera: Reduviidae) are the primary vectors of Chagas disease in Southern Ecuador. This study tested the effectiveness of selective deltamethrin application of Domiciliary Units (DUs) infested with triatomines, coupled with community education activities and a community-based surveillance system. Ten communities were selected in Loja Province, 466 DUs were examined, of these, 5.6% were infested with R. ecuadoriensis (Density [D] = 4 triatomines/DUs searched, Crowding [CR] = 71 triatomines/infested house, Colonization Index [CI] = 77% infested DUs with nymphs) and 8% with T. carrioni (D = 0.6, CR = 7, CI = 64%). Infested DUs were sprayed with deltamethrin. Subsequent visits were conducted at 6 and 12 mo after spraying. At each time point, new entomological searches were carried out in all DUs. All entomological indexes dropped significantly for the primary vector species one year after the initial intervention (R. ecuadoriensis: I = 2%, D = 0.1, CR = 7, CI = 100%; T. carrioni: I = 1.6%, D = 0.1, CR = 5.5, CI = 50%). Fifteen min educational talks were conducted in every DUs and workshops for schoolchildren were organized. Community-based surveillance system was established. However, there is a high risk of DUs reinfestation, possibly from sylvatic habitats (especially of R. ecuadoriensis) and reinforcing educational and surveillance activities are necessary.


Sujet(s)
Éducation pour la santé , Enquêtes et questionnaires , Maladie de Chagas , Équateur , Insecticides
2.
Vector borne zoonotic dis. (Larchmont, N.Y.) ; Vector borne zoonotic dis. (Larchmont, N.Y.);22(9): 449-458, 20220000. tab, ilus
Article de Anglais | LILACS, BVSDIP | ID: biblio-1562962

RÉSUMÉ

The objective of this study was to evaluate the effectiveness of selective and community-wide house insecticide spraying in controlling triatomines in the subtropical areas of Loja Province, Ecuador. We designed a quasiexperimental pre­post-test without a control group to compare entomological levels before and after spraying. The baseline study was conducted in 2008. Second, third, and fourth visits were conducted in 2010, 2011, and 2012 in three rural communities. Out of the 130 domestic units (DU) visited, 41 domestic units were examined in each of the four visits. Selective and community-wide insecticide interventions included spraying with 5% deltamethrin at 25 mg/m2 active ingredient. At each visit, a questionnaire was administered to identify the characteristics of households, and DUs were searched for triatomine bugs. In addition, parasitological analysis was carried out in life triatomines. One and two rounds of selective insecticide spraying decreased the probability of infestation by 62% (pairwise odds ratios [POR] 0.38, 95% confidence interval [CI] 0.17­0.89, p = 0.024) and 51% (POR 0.49, 95% CI 0.23­1.01, p = 0.054), respectively. A similar effect was observed after one round of community-wide insecticide application in Chaquizhca and Guara (POR 0.55, CI 0.24­1.25, p = 0.155) and Bellamaria (POR 0.62, CI 0.22­1.79, p = 0.379); however, it was not statistically significant. Trypanosoma cruzi infection in triatomines (n = 483) increased overtime, from 2008 (42.9% and 8.5% for Rhodnius ecuadoriensis and Panstrongylus chinai, respectively) to 2012 (79.5% and 100%). Neither of the two spraying methodologies was effective for triatomine control in this area and our results point to a high likelihood of reinfestation after insecticide application. This underscores the importance of the implementation of physical barriers that prevent invasion and colonization of triatomines in households, such as home improvement initiatives, accompanied by a concerted effort to address the underlying socioeconomic issues that keep this population at risk of developing Chagas disease.


Sujet(s)
Trypanosoma cruzi , Triatominae , Maladie de Chagas , Équateur , Insecticides
3.
Mem. Inst. Oswaldo Cruz ; 116: e210259, 2021. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1360599

RÉSUMÉ

BACKGROUND Panstrongylus rufotuberculatus (Hemiptera-Reduviidae) is a triatomine species with a wide geographic distribution and a broad phenotypic variability. In some countries, this species is found infesting and colonising domiciliary ecotopes representing an epidemiological risk factor as a vector of Trypanosoma cruzi, etiological agent of Chagas disease. In spite of this, little is known about P. rufotuberculatus genetic diversity. METHODS Cytogenetic studies and DNA sequence analyses of one nuclear (ITS-2) and two mitochondrial DNA sequences (cyt b and coI) were carried out in P. rufotuberculatus individuals collected in Bolivia, Colombia, Ecuador and Mexico. Moreover, a geometric morphometrics study was applied to Bolivian, Colombian, Ecuadorian and French Guiana samples. OBJECTIVES To explore the genetic and phenetic diversity of P. rufotuberculatus from different countries, combining chromosomal studies, DNA sequence analyses and geometric morphometric comparisons. FINDINGS We found two chromosomal groups differentiated by the number of X chromosomes and the chromosomal position of the ribosomal DNA clusters. In concordance, two main morphometric profiles were detected, clearly separating the Bolivian sample from the other ones. Phylogenetic DNA analyses showed that both chromosomal groups were closely related to each other and clearly separated from the remaining Panstrongylus species. High nucleotide divergence of cyt b and coI fragments were observed among P. rufotuberculatus samples from Bolivia, Colombia, Ecuador and Mexico (Kimura 2-parameter distances higher than 9%). MAIN CONCLUSIONS Chromosomal and molecular analyses supported that the two chromosomal groups could represent different closely related species. We propose that Bolivian individuals constitute a new Panstrongylus species, being necessary a detailed morphological study for its formal description. The clear morphometric discrimination based on the wing venation pattern suggests such morphological description might be conclusive.

4.
Mem. Inst. Oswaldo Cruz ; 105(5): 677-681, Aug. 2010. mapas, tab
Article de Anglais | LILACS | ID: lil-557229

RÉSUMÉ

Rhodnius ecuadoriensis is considered the second most important vector of Chagas disease in Ecuador. It is distributed across six of the 24 provinces and occupies intradomiciliary, peridomiciliary and sylvatic habitats. This study was conducted in six communities within the coastal province of Guayas. Triatomine searches were conducted in domestic and peridomestic habitats and bird nests using manual searches, live-bait traps and sensor boxes. Synantrhopic mammals were captured in the domestic and peridomestic habitats. Household searches (n = 429) and randomly placed sensor boxes (n = 360) produced no live triatomine adults or nymphs. In contrast, eight nymphs were found in two out of six searched Campylorhynchus fasciatus (Troglodytidae) nests. Finally, Trypanosoma cruzi DNA was amplified from the blood of 10 percent of the 115 examined mammals. Environmental changes in land use (intensive rice farming), mosquito control interventions and lack of intradomestic adaptation are suggested among the possible reasons for the lack of domestic triatomine colonies.


Sujet(s)
Animaux , Maladie de Chagas/transmission , Maladies endémiques , Vecteurs insectes/physiologie , Triatominae/physiologie , Trypanosoma cruzi , Oiseaux , Maladie de Chagas , Équateur , Logement , Mammifères
5.
Mem. Inst. Oswaldo Cruz ; 103(7): 690-695, Nov. 2008. tab
Article de Anglais | LILACS | ID: lil-498379

RÉSUMÉ

Rhodnius ecuadoriensis is the second most important vector of Chagas Disease (CD) in Ecuador. The objective of this study was to describe (and compare) the life cycle, the feeding and defecation patterns under laboratory conditions of two populations of this specie [from the provinces of Manabí (Coastal region) and Loja (Andean region)]. Egg-to-adult (n = 57) development took an average of 189.9 ± 20 (Manabí) and 181.3 ± 6.4 days (Loja). Mortality rates were high among Lojan nymphs. Pre-feeding time (from contact with host to feeding initiation) ranged from 4 min 42 s [nymph I (NI)] to 8 min 30 s (male); feeding time ranged from 14 min 45 s (NI)-28 min 25 s (male) (Manabí) and from 15 min 25 s (NI)-28 min 57 s (nymph V) (Loja). The amount of blood ingested increased significantly with instar and was larger for Manabí specimens (p < 0.001). Defecation while feeding was observed in Manabí specimens from stage nymph III and in Lojan bugs from stage nymph IV. There was a gradual, age-related increase in the frequency of this behaviour in both populations. Our results suggest that R. ecuadoriensis has the bionomic traits of an efficient vector of Trypanosoma cruzi. Together with previous data on the capacity of this species to infest rural households, these results indicate that control of synanthropic R. ecuadoriensis populations in the coastal and Andean regions may have a significant impact for CD control in Ecuador and Northern Peru.


Sujet(s)
Animaux , Femelle , Mâle , Défécation/physiologie , Comportement alimentaire/physiologie , Vecteurs insectes/physiologie , Étapes du cycle de vie/physiologie , Rhodnius/physiologie , Vecteurs insectes/croissance et développement , Rhodnius/croissance et développement
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE