Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Acta Physiologica Sinica ; (6): 269-274, 2006.
Article Dans Chinois | WPRIM | ID: wpr-265455

Résumé

Cardiac hypertrophy is an adaptive process to an increased hemodynamic overload. However, the adaption may lead to the fragility of myocardium facing pathological stimuli. In the present study, experiments were designed to explore the susceptibility of hypertrophic myocardiocytes to apoptotic stimuli and the role of protein kinase Cdelta (PKCdelta) during the transition from hypertrophy to apoptosis. Endothelin-1 (ET-1)-treated cardiomyocytes were used as model of cardiac hypertrophy. Angiotensin II (Ang II) was used as an apoptotic stimulus. Cell surface area was measured to determine the extent of hypertrophy. The apoptotic rate in cardiomyocytes was detected by Hoechst 33258. (1) Cell surface area was increased by 42.5% and 67.3% following 1 nmol/L and 10 nmol/L ET-1 treatment, respectively, as compared with serum-free cultured myocytes. So the mildly and moderately hypertrophic myocyte models were set up. (2) Apoptotic rates in serum-free cultured, mildly and moderately hypertrophic myocytes after Ang II treatment were (15.54+/-1.32) %, (20.65+/-1.40) % and (29.33+/-3.52) %, respectively. It is suggested that hypertrophic myocytes are more susceptive to apoptotic stimulus. (3) Rottlerin, a specific inhibitor of PKCdelta depressed apoptotic rates induced by Ang II to (15.88+/-2.25) % in mildly hypertrophic myocytes and to (15.01+/-1.37) % in moderately hypertrophic myocytes; but rottlerin did not affect apoptotic rate induced by Ang II in serum-free cultured myocytes. These results suggest that inhibition of PKCdelta can reduce Ang II-induced apoptosis of hypertrophic cardiomyocytes and that PKCdelta is possibly involved in the apoptotic process of hypertrophic cardiomyocytes.


Sujets)
Animaux , Rats , Angiotensine-II , Pharmacologie , Animaux nouveau-nés , Apoptose , Physiologie , Cardiomégalie , Anatomopathologie , Augmentation de la taille cellulaire , Endothéline-1 , Pharmacologie , Défaillance cardiaque , Myocytes cardiaques , Biologie cellulaire , Anatomopathologie , Culture de cellules primaires , Protein kinase C-delta , Physiologie , Rat Sprague-Dawley
SÉLECTION CITATIONS
Détails de la recherche