Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Chinese Pharmacological Bulletin ; (12): 506-514, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013643

Résumé

Aim To investigate the effect of miR-141-5p/ZNF705A in chronic myeloid leukemia(CML)cell-derived exosome(Exo)on the adhesion of bone marrow mesenchymal stem cells(BMSCs). Methods The morphology and size of Exo in peripheral blood from CML patients and K562 cells were examined by electron microscopy and NTA particle size analysis. The expressions of Exo and BMSCs marker molecules and adhesion proteins in K562 cells were detected by qRT-PCR and Western blot before and after transfection. The adhesion ability of BMSCs was detected by cell adhesion assay, and the cellular activity of BMSCs was examined using CCK-8. miR-141-5p binding to ZNF705A was detected by luciferase assay. Results qRT-PCR results showed that miR-141-5p expression was significantly reduced in both CML patients and K562 cell-derived Exo. qRT-PCR, Western blot and other results showed that BMSCs in CML patients had significantly reduced the expression of adhesion proteins CD44 and CXCL12, and were able to phagocytose K562 cell-derived Exo. Further, K562-derived Exo was found to reduce CD44 and CXCL12 expression and adhesion in Exo-promoted BMSCs compared with CD34+ cells. Meanwhile, the results of dual luciferase reporter assay verified that miR-141-5p targeted binding to ZNF705A. Finally, we found ZNF705A could be targeted by up-regulating miR-141-5p expression in Exo of K562 cells, which in turn inhibited the adhesion of BMSCs. Conclusions K562 cells down-regulate miR-141-5p expression in Exo and inhibit the adhesion function of BMSCs by targeting ZNF705A, thus regulating the bone marrow hematopoietic function in CML patients.

2.
Journal of Medical Biomechanics ; (6): E215-E219, 2015.
Article Dans Chinois | WPRIM | ID: wpr-804469

Résumé

Objective To study the anisotropic mechanical properties of the thoracic aorta in porcine. Methods Twenty-one porcine thoracic aortas were collected and categorized into three groups. The aortas were then cut through in their axial directions and expanded into two dimensional planes. Then, by setting the length direction of the planar aortas (i.e., axial directions of the aortas) as 0°, each planar aorta was counterclockwisely cut into 8 samples with orientation of 30°, 45°, 60°, 90°, 120°, 135°, 150° and 180°, respectively. Finally, the uniaxial tensile tests were applied on three groups of samples at the loading rates of 1, 5 and 10 mm/min, respectively, to obtain the elastic modulus and ultimate stress of the aorta in different directions and at different loading rates. Results The stress-strain curves exhibited different viscoelastic behaviors. With the increase of sample orientations, the elastic modulus gradually increased from 30°, reached the maximum value at 90°, and then gradually decreased till 180°. The variation trend of ultimate stress was similar to that of elastic modulus. Moreover, different loading rates showed a significant influence on the results of elastic modulus and ultimate stress, but a weak influence on the anisotropic degree. Conclusions The porcine thoracic aorta is highly anisotropic. This research finding provides parameter references for assignment of material properties in finite element modeling, and is significant for understanding biomechanical properties of the arteries.

SÉLECTION CITATIONS
Détails de la recherche