Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Southern Medical University ; (12): 272-277, 2022.
Article Dans Chinois | WPRIM | ID: wpr-936312

Résumé

OBJECTIVE@#To investigate the changes in autophagy of mesenchymal stem cells (MSCs) from patients with ankylosing spondylitis and explore the mechanism for decreased autophagy in ASMSCs.@*METHODS@#MSCs collected from 14 patients with AS (ASMSCs) and from 15 healthy donors (HDMSCs) were cultured in the absence or presence of 25 ng/mL TNF-α for 6 h. Autophagy of the cells was determined by immunofluorescence staining of GFP-LC3B, and the results were confirmed by detecting the protein expressions of autophagy markers LC3 II/LC3 I and P62. The mRNA expressions of the related genes were detected using qRT-PCR, and the protein expressions of the autophagy markers and signaling pathway-related molecules were determined with Western blotting. TG100713 was used to block the PI3K/AKT/mTOR signal pathway, and its effect on autophagy of ASMSCs was evaluated.@*RESULTS@#ASMSCs showed significantly weaker GFP-LC3B puncta staining and lower protein expression levels of LC3 II/LC3 I but higher levels of P62 protein (P < 0.05), indicating a decreased autophagy capacity as compared with HDMSCs. TNF-α-induced ASMSCs showed significantly higher protein expressions of p-PI3K/ PI3K, p-AKT/AKT and p-mTOR/mTOR than HDMSCs (P < 0.05), suggesting hyperactivation of the PI3K/AKT/mTOR signaling pathway in ASMSCs. Blocking PI3K/AKT/mTOR signaling with TG100713 eliminated the difference in TNF-α-induced autophagy between HDMSCs and ASMSCs.@*CONCLUSION@#In patients with AS, hyperactivation of the PI3K/AKT/mTOR signaling pathway results in decreased autophagy of the MSCs and potentially contributes to chronic inflammation.


Sujets)
Humains , Autophagie , Cellules souches mésenchymateuses/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Transduction du signal , Pelvispondylite rhumatismale , Sérine-thréonine kinases TOR/métabolisme , Facteur de nécrose tumorale alpha/métabolisme
SÉLECTION CITATIONS
Détails de la recherche