Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Biomedical Engineering ; (6): 334-339, 2020.
Article Dans Chinois | WPRIM | ID: wpr-828162

Résumé

In order to evaluate the safety performance of self-expandable NiTi alloy stents systematically, the dynamic safety factor drawn up by International Organization for Standardization, was used to quantitatively reflect the safety performance of stents. Based on the constitutive model of super-elastic memory alloy material in Abaqus and uniaxial tensile test data of NiTi alloy tube, finite element method and experiments on accelerated fatigue life were carried out to simulate the self-expansion process and the shape change process under the action of high and low blood pressure for three -type stents of 8×30 mm, 10×30 mm, 12×30 mm. By analyzing the changes of stress and strain of self-expanding NiTi alloy stent, the maximum stress and strain, stress concentration position, fatigue strength and possible failure modes were studied, thus the dynamic safety factor of stent was calculated. The results showed that the maximum stress and plastic strain of the stent increased with the increase of grip pressure, but the maximum stress and strain distribution area of the stent had no significant change, which were all concentrated in the inner arc between the support and the connector. The dynamic safety factors of the three stents were 1.31, 1.23 and 1.14, respectively, which indicates that the three stents have better safety and reliability, and can meet the fatigue life requirements of more than 10 years, and safety performance of the three stents decreases with the increase of stent's original diameter.


Sujets)
Alliages , Analyse des éléments finis , Nickel , Reproductibilité des résultats , Endoprothèses métalliques auto-expansibles , Contrainte mécanique , Titane
2.
Journal of Medical Biomechanics ; (6): E442-E446, 2018.
Article Dans Chinois | WPRIM | ID: wpr-803734

Résumé

Objective To analyze the relationship between fatigue strength and connector length of intracranial artery stents, so as to investigate the exact location of fatigue fracture for the stent. Methods The fatigue life for 3 kinds of artery stents were analyzed by finite element analysis method of fatigue fracture, and distribution map of dangerous points was drawn by means of Goodman curve. Based on F2477-07 standard from American Society for Testing and Materials (ASTM), the fatigue life for 3 kinds of stents was tested. Results If the length of the support connector was longer, the maximum equivalent stress and the average stress in dangerous points of the stent would be larger. If the distribution of dangerous points was more close to the curve of fatigue limit, and fatigue fracture was more likely to occur in the stent. Goodman curves indicated that 3 kinds of stents was safe to be used in the body for ten years. Finite element analysis and experimental result showed that fatigue life near the stent junction was relatively lower, and dangerous points of the stent was located at the arc junction. Conclusions It is reasonable to study stents by finite element analysis, whose results are basically coincided with the experimental data. Fatigue life can be extended by reducing connector’s length for the design of stent structure.

SÉLECTION CITATIONS
Détails de la recherche