RÉSUMÉ
For over a thousand years, various substances have been applied to the skin to treat pain. Some of these substances have active ingredients that we still use today. However, some have been discontinued due to their harmful effect, while others have been long forgotten. Recent concerns regarding the cardiovascular and renal risk from nonsteroidal anti-inflammatory drugs, and issues with opioids, have resulted in increasing demand and attention to non-systemic topical alternatives. There is increasing evidence of the efficacy and safety of topical agents in pain control. Topical analgesics are great alternatives for pain management and are an essential part of multimodal analgesia. This review aims to describe essential aspects of topical drugs that physicians should consider in their practice as part of multimodal analgesia. This review describes the mechanism of popular topical analgesics and also introduces the most recently released and experimental topical medications.
RÉSUMÉ
Background@#Among various diseases that accompany pain, complex regional pain syndrome (CRPS) is one of the most frustrating for patients and physicians. Recently, many studies have shown functional and anatomical abnormalities in the brains of patients with CRPS. The calcium-related signaling pathway is important in various physiologic processes via calmodulin (CaM) and calcium-calmodulin kinase 2 (CaMK2). To investigate the cerebral mechanism of CRPS, we measured changes in CaM and CaMK2 expression in the cerebrum in CRPS animal models. @*Methods@#The chronic post-ischemia pain model was employed for CRPS model generation. After generation of the animal models, the animals were categorized into three groups based on changes in the withdrawal threshold for the affected limb: CRPS-positive (P), CRPS-negative (N), and control (C) groups. Western blot analysis was performed to measure CaM and CaMK2 expression in the rat cerebrum. @*Results@#Animals with a decreased withdrawal threshold (group P) showed a significant increment in cerebral CaM and CaMK2 expression (P = 0.013 and P = 0.021, respectively). However, groups N and C showed no difference in CaM and CaMK2 expression. @*Conclusions@#The calcium-mediated cerebral process occurs after peripheral injury in CRPS, and there can be a relationship between the cerebrum and the pathogenesis of CRPS.
RÉSUMÉ
Background@#The aim of this study was to evaluate radiation exposure to the eye and thyroid in pain physicians during the fluoroscopy-guided cervical epidural block (CEB). @*Methods@#Two pain physicians (a fellow and a professor) who regularly performed Carm fluoroscopy-guided CEBs were included. Seven dosimeters were used to measure radiation exposure, five of which were placed on the physician (forehead, inside and outside of the thyroid protector, and inside and outside of the lead apron) and two were used as controls. Patient age, sex, height, and weight were noted, as were radiation exposure time, absorbed radiation dose, and distance from the X-ray field center to the physician. @*Results@#One hundred CEB procedures using C-arm fluoroscopy were performed on comparable patients. Only the distance from the X-ray field center to the physician was significantly different between the two physicians (fellow: 37.5 ± 2.1 cm, professor: 41.2 ± 3.6 cm, P = 0.03). The use of lead-based protection effectively decreased the absorbed radiation dose by up to 35%. @*Conclusions@#Although there was no difference in radiation exposure between the professor and the fellow, there was a difference in the distance from the X-ray field during the CEBs. Further, radiation exposure can be minimized if proper protection (thyroid protector, leaded apron, and eyewear) is used, even if the distance between the X-ray beam and the pain physician is small. Damage from frequent, low-dose radiation exposure is not yet fully understood. Therefore, safety measures, including lead-based protection, should always be enforced.
RÉSUMÉ
BACKGROUND: The respiratory cycle alters the size of the right internal jugular vein (RIJV). We assessed the changes in RIJV size during the respiratory cycle in patients under positive pressure ventilation. Moreover, we examined the effects of positive-end expiratory pressure (PEEP) and the Trendelenburg position on respiratory fluctuations. METHODS: A prospective study of 24 patients undergoing general endotracheal anesthesia was performed. Images of the RIJV were obtained in the supine position with no PEEP (baseline, S0) and after applying three different maneuvers in random order: (1) a PEEP of 10 cmH2O (S10), (2) a 10degrees Trendelenburg tilt position (T0), and (3) a 10degrees Trendelenburg tilt position combined with a PEEP of 10 cmH2O (T10). Using the images when the area was smallest and largest, cross-sectional area (CSA), anteroposterior diameter, and transverse diameter were measured. RESULTS: All maneuvers minimized the fluctuation in RIJV size (all P = 0.0004). During the respiratory cycle, the smallest CSA compared to the largest CSA at S0, S10, T0, and T10 decreased by 28.3 8.5, 8.0, and 4.4%, respectively. Furthermore, compared to S0, a 10degrees Trendelenburg tilt position with a PEEP of 10 cmH2O significantly increased the CSA in the largest areas by 83.8% and in the smallest areas by 169.4%. CONCLUSIONS: A 10degrees Trendelenburg tilt position combined with a PEEP of 10 cmH2O not only increases the size of the RIJV but also reduces fluctuation by the respiratory cycle.