Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Zhejiang University. Medical sciences ; (6): 58-70, 2020.
Article Dans Chinois | WPRIM | ID: wpr-828538

Résumé

Iron homeostasis plays an important role for the maintenance of human health. It is known that iron metabolism is tightly regulated by several key genes, including divalent metal transport-1(), transferrin receptor 1(), transferrin receptor 2(), ferroportin(), hepcidin(), hemojuvelin() and . Recently, it is reported that DNA methylation, histone acetylation, and microRNA (miRNA) epigenetically regulated iron homeostasis. Among these epigenetic regulators, DNA hypermethylation of the promoter region of , and bone morphogenetic protein 6 () genes result in inhibitory effect on the expression of these iron-related gene. In addition, histone deacetylase (HADC) suppresses gene expression. On the contrary, HADC inhibitor upregulates gene expression. Additional reports showed that miRNA can also modulate iron absorption, transport, storage and utilization via downregulation of and other genes. It is noteworthy that some key epigenetic regulatory enzymes, such as DNA demethylase TET2 and histone lysine demethylase JmjC KDMs, require iron for the enzymatic activities. In this review, we summarize the recent progress of DNA methylation, histone acetylation and miRNA in regulating iron metabolism and also discuss the future research directions.


Sujets)
Humains , Épigenèse génétique , Régulation de l'expression des gènes , Génétique , Homéostasie , Fer , Métabolisme , Récepteurs à la transferrine
SÉLECTION CITATIONS
Détails de la recherche