RÉSUMÉ
ObjectiveTo observe the effect of brain-computer interface (BCI) training based on motor imagery on hand function in hemiplegic patients with subacute stroke. MethodsFrom June, 2020 to December, 2021, 40 patients with hemiplegia in subacute stroke from Department of Rehabilitation Medicine, Fifth Affiliated Hospital of Zhengzhou University were divided into control group (n = 20) and experimental group (n = 20) using random number table. Both groups accepted medication and routine comprehensive rehabilitation, while the control group accepted hand rehabilitation robot training, and the experimental group accepted the robot training using motor imagery-based BCI, for four weeks. They were assessed with Fugl-Meyer Assessment-Upper Extremities (FMA-UE), modified Barthel Index, modified Ashworth scale, and measured integrated electromyogram of the superficial finger flexors, finger extensors and short thumb extensors of the affected forearm during maximum isometric voluntary contraction with surface electromyography. ResultsTwo patients in the control group and one in the experimental group dropped off. All the indexes improved in both groups after treatment (t > 2.322, Z > 2.631, P < 0.05), and they were better in the experimental group than in the control group (t > 2.227, Z > 2.078, P < 0.05), except the FMA-UE score of wrist. ConclusionMotor imagery-based BCI training is more effective on hand function and activities of daily living in hemiplegic patients with subacute stroke.
RÉSUMÉ
ObjectiveTo conduct a visualized analysis of the research related to the use of brain-computer interface technology for stroke rehabilitation in the past ten years, and identify and predict the hot spots and hot trends in order to promote the further development of this field. MethodsThe Web of Science Core Collection database was searched for literature related to brain-computer interface technology for stroke rehabilitation from January, 2011 to October, 2022. CiteSpace 5.8.R3 was used to analyze the number of publications, countries, institutions, authors, keywords, co-citations, and grant support. Results and ConclusionA total of 592 papers were included, and the annual number of publications in this field of research showed a rapid growth trend, and the research enthusiasm continued to increase. The United States was in the leading position in this field, with the highest number of cooperative publications and the highest intermediary centrality; China had certain advantages in this field, but still needed to strengthen the exchange and cooperation with other countries/regions. Foreign institutions and authors had formed a network of close cooperative relationships, and formed a high-impact team represented by Niels Birbaumer, Cuntai Guan, Kai Keng Ang, etc.; there were poor cooperative relationships among domestic authors and institutions, and there were geographical restrictions and lack of high-impact academic groups. The keywords "motor imagery" and "recovery" formed ten major clusters and 15 prominent words with high variation rates, showing a trend of diversification in research directions. The study of the efficacy of upper limb motor rehabilitation and central mechanisms has been the hot topics in this field and will continue for some time in the future; the use of lower limb brain-computer interface systems for improving foot drop, gait and balance in stroke patients and the application of multimodal brain-computer interfaces will probably become a hot topic in the future. Finally, the use of brain-computer interface-guided neurofeedback training for cognitive and language rehabilitation in stroke also needs attention.