Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
1.
Korean Journal of Urology ; : 726-732, 2012.
Article Dans Anglais | WPRIM | ID: wpr-192528

Résumé

PURPOSE: To evaluate the combined role of mescenchymal stem cells (MSCs) infected with recombinant adenoviruses expressing human BDNF (rAd/hBDNF) on the erectile dysfunction in rat with cavernous nerve injury. MATERIALS AND METHODS: Rats divided into 4 groups: control group, bilateral cavernous nerve crushing group (BCNC group), BCNC with MSCs group and BCNC with MSCs infected with rAd/hBDNF group. After 4-week, functional assessment was done. PKH26 and BDNF staining of major pelvic ganglion and masson's trichrome staining of corpus cavernosum were performed. Western blot analysis of endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) was done in corpus cavernosum. RESULTS: After 4 weeks, BCNC with MSCs and MSCs infected with rAd/hBDNF groups showed significantly well-preserved erectile function compared with BCNC group. Moreover, the erectile function of MSCs infected with rAd/hBDNF group was significantly well-preserved than BCNC with MSCs group. The smooth muscle of corpus cavernosum was significantly preserved in BCNC with MSCs and MSCs infected with rAd/hBDNF groups compared with BCNC group. More preservation of smooth muscle was observed in rats with MSCs infected with rAd/hBDNF than with MSCs alone. Significant increase expression of eNOS and nNOS was noted in rats with MSCs infected with rAd/hBDNF than with MSCs alone. CONCLUSIONS: The erectile function was more preserved after injection with MSCs infected with rAd/hBDNF in rat with ED caused by cavernous nerve injury. Therefore, the use of MSC infected with rAd/hBDNF may have a better treatment effect on ED cause by cavernous nerve injury.


Sujets)
Animaux , Humains , Mâle , Rats , Adenoviridae , Technique de Western , Facteur neurotrophique dérivé du cerveau , Grottes , Dysfonctionnement érectile , Pseudokystes mucoïdes juxta-articulaires , Cellules souches mésenchymateuses , Muscles lisses , Écrasement de nerf , Nitric oxide synthase type I , Nitric oxide synthase type III , Composés chimiques organiques , Cellules souches
SÉLECTION CITATIONS
Détails de la recherche