Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
China Pharmacy ; (12): 1334-1338, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1031709

Résumé

OBJECTIVE To investigate the effect of dioscin on renal injury in septic rats and its possible mechanism. METHODS The septic rat model was induced by using cecal ligation and puncture. Sixty model rats were randomly divided into model group (0.5% sodium carboxymethyl cellulose solution), dioscin low-dose, medium-dose and high-dose groups (30, 60, 120 mg/kg) and dexamethasone group (positive control, 10 mg/kg), with 12 rats per group; another 12 rats were selected as the sham operation group (0.5% sodium carboxymethyl cellulose solution). After 15 minutes of modeling, rats in each group were injected with medicine/0.5% sodium carboxymethyl cellulose solution via the tail vein. Twenty-four hours after administration, the levels of creatinine (Cr), blood urea nitrogen (BUN), neutrophil gelatinase associated lipocalin (NGAL), kidney injury molecule-1 (KIM- 1), interleukin 6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in serum and malondialdehyde (MDA) in renal tissue, superoxide dismutase (SOD) activity and the protein expressions of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NOD-like receptor protein 3 (NLRP3) were detected; renal histomorphology was observed. RESULTS Compared with model group, pathological injury of renal tissue was improved significantly in dioscin low-dose, medium-dose and high-dose groups; the levels of Cr, BUN, NGAL, KIM-1, IL-6, IL-1β and TNF-α in serum, MDA level and protein expression of NLRP3 in renal tissue were decreased significantly (P<0.05); SOD activity in renal tissue, protein expressions of Nrf2 and HO-1 were increased significantly (P<0.05), in a dose-dependent manner (P<0.05). The pathological damage of renal tissue in the dioscin high-dose group was similar to dexamethasone group, and there was no statistically significant difference in the levels of the above indicators (P>0.05). CONCLUSIONS Dioscin can activate the Nrf2/HO-1 signaling pathway to inhibit NLRP3 inflammasome, and realize the inhibition of inflammatory factors and oxidative stress, so as to protect the kidney injury in sepsis.

2.
China Pharmacy ; (12): 1334-1338, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1031731

Résumé

OBJECTIVE To investigate the effect of dioscin on renal injury in septic rats and its possible mechanism. METHODS The septic rat model was induced by using cecal ligation and puncture. Sixty model rats were randomly divided into model group (0.5% sodium carboxymethyl cellulose solution), dioscin low-dose, medium-dose and high-dose groups (30, 60, 120 mg/kg) and dexamethasone group (positive control, 10 mg/kg), with 12 rats per group; another 12 rats were selected as the sham operation group (0.5% sodium carboxymethyl cellulose solution). After 15 minutes of modeling, rats in each group were injected with medicine/0.5% sodium carboxymethyl cellulose solution via the tail vein. Twenty-four hours after administration, the levels of creatinine (Cr), blood urea nitrogen (BUN), neutrophil gelatinase associated lipocalin (NGAL), kidney injury molecule-1 (KIM- 1), interleukin 6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in serum and malondialdehyde (MDA) in renal tissue, superoxide dismutase (SOD) activity and the protein expressions of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NOD-like receptor protein 3 (NLRP3) were detected; renal histomorphology was observed. RESULTS Compared with model group, pathological injury of renal tissue was improved significantly in dioscin low-dose, medium-dose and high-dose groups; the levels of Cr, BUN, NGAL, KIM-1, IL-6, IL-1β and TNF-α in serum, MDA level and protein expression of NLRP3 in renal tissue were decreased significantly (P<0.05); SOD activity in renal tissue, protein expressions of Nrf2 and HO-1 were increased significantly (P<0.05), in a dose-dependent manner (P<0.05). The pathological damage of renal tissue in the dioscin high-dose group was similar to dexamethasone group, and there was no statistically significant difference in the levels of the above indicators (P>0.05). CONCLUSIONS Dioscin can activate the Nrf2/HO-1 signaling pathway to inhibit NLRP3 inflammasome, and realize the inhibition of inflammatory factors and oxidative stress, so as to protect the kidney injury in sepsis.

SÉLECTION CITATIONS
Détails de la recherche