Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Neurogastroenterology and Motility ; : 606-615, 2017.
Article Dans Anglais | WPRIM | ID: wpr-14787

Résumé

BACKGROUND/AIMS: Bile acid is an important luminal factor that affects gastrointestinal motility and secretion. We investigated the effect of bile acid on secretion in the proximal and distal rat colon and coordination of bowel movements in the guinea pig colon. METHODS: The short-circuit current from the mucosal strip of the proximal and distal rat colon was compared under control conditions after induction of secretion with deoxycholic acid (DCA) as well as after inhibition of secretion with indomethacin, 1,2-bis (o-aminophenoxy) ethane-N,N,N′,N′-tetra-acetic acid (an intracellular calcium chelator; BAPTA), and tetrodotoxin (TTX) using an Ussing chamber. Colonic pressure patterns were also evaluated in the extracted guinea pig colon during resting, DCA stimulation, and inhibition by TTX using a newly developed pressure-sensing artificial stool. RESULTS: The secretory response in the distal colon was proportionate to the concentration of DCA. Also, indomethacin, BAPTA, and TTX inhibited chloride secretion in response to DCA significantly (P < 0.05). However, these changes were not detected in the proximal colon. When we evaluated motility, we found that DCA induced an increase in luminal pressure at the proximal, middle, and distal sensors of an artificial stool simultaneously during the non-peristaltic period (P < 0.05). In contrast, during peristalsis, DCA induced an increase in luminal pressure at the proximal sensor and a decrease in pressure at the middle and distal sensors of the artificial stool (P < 0.05). CONCLUSIONS: DCA induced a clear segmental difference in electrogenic secretion. Also, DCA induced a more powerful peristaltic contraction only during the peristaltic period.


Sujets)
Animaux , Rats , Bile , Calcium , Côlon , Acide désoxycholique , Motilité gastrointestinale , Cochons d'Inde , Guinée , Indométacine , Gros intestin , Péristaltisme , Phénobarbital , Tétrodotoxine
2.
International Neurourology Journal ; : 133-141, 2015.
Article Dans Anglais | WPRIM | ID: wpr-90694

Résumé

The loss of urinary bladder control/sensation, also known as urinary incontinence (UI), is a common clinical problem in autistic children, diabetics, and the elderly. UI not only causes discomfort for patients but may also lead to kidney failure, infections, and even death. The increase of bladder urine volume/pressure above normal ranges without sensation of UI patients necessitates the need for bladder sensors. Currently, a catheter-based sensor is introduced directly through the urethra into the bladder to measure pressure variations. Unfortunately, this method is inaccurate because measurement is affected by disturbances in catheter lines as well as delays in response time owing to the inertia of urine inside the bladder. Moreover, this technique can cause infection during prolonged use; hence, it is only suitable for short-term measurement. Development of discrete wireless implantable sensors to measure bladder volume/pressure would allow for long-term monitoring within the bladder, while maintaining the patient's quality of life. With the recent advances in microfabrication, the size of implantable bladder sensors has been significantly reduced. However, microfabricated sensors face hostility from the bladder environment and require surgical intervention for implantation inside the bladder. Here, we explore the various types of implantable bladder sensors and current efforts to solve issues like hermeticity, biocompatibility, drift, telemetry, power, and compatibility issues with popular imaging tools such as computed tomography and magnetic resonance imaging. We also discuss some possible improvements/emerging trends in the design of an implantable bladder sensor.


Sujets)
Sujet âgé , Enfant , Humains , Matériaux biocompatibles , Cathéters , Hostilité , Imagerie par résonance magnétique , Microtechnologie , Qualité de vie , Temps de réaction , Valeurs de référence , Insuffisance rénale , Sensation , Télémétrie , Urètre , Vessie urinaire , Incontinence urinaire
3.
International Neurourology Journal ; : 98-106, 2013.
Article Dans Anglais | WPRIM | ID: wpr-68528

Résumé

From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind.


Sujets)
Humains , Matériaux biocompatibles , Génie biomédical , Pression sanguine , Implants cochléaires , Corrosion , Électronique médicale , Corps médical , Systèmes micro-électro-mécaniques
SÉLECTION CITATIONS
Détails de la recherche