Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Korean Medical Science ; : e205-2023.
Article Dans Anglais | WPRIM | ID: wpr-1001102

Résumé

Tixagevimab/cilgavimab is a monoclonal antibody used to prevent coronavirus disease 2019 among immunocompromised hosts and maintained neutralizing activity against early omicron variants. Omicron BN.1 became a dominant circulating strain in Korea early 2023, but its susceptibility to tixagevimab/cilgavimab is unclear. We conducted plaque reduction neutralization test (PRNT) against BN.1 in a prospective cohort (14 patients and 30 specimens). BN.1 PRNT was conducted for one- and three-months after tixagevimab/ cilgavimab administration and the average PRNT ND 50 of each point was lower than the positive cut-off value of 20 (12.9 ± 4.5 and 13.2 ± 4.2, respectively, P = 0.825). In the paired analyses, tixagevimab/cilgavimab-administered sera could not actively neutralize BN.1 (PRNT ND 50 11.5 ± 2.9, P = 0.001), compared with the reserved activity against BA.5 (ND 50 310.5 ± 180.4). Unlike virus-like particle assay, tixagevimab/cilgavimab was not active against BN.1 in neutralizing assay, and would not be effective in the present predominance of BA.2.75 sublineages.

2.
Immune Network ; : e33-2023.
Article Dans Anglais | WPRIM | ID: wpr-1040778

Résumé

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization.However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccineinduced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARSCoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins.Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein.The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.

3.
Journal of Korean Medical Science ; : e70-2022.
Article Dans Anglais | WPRIM | ID: wpr-925948

Résumé

Concerns about the effectiveness of current vaccines against the rapidly spreading severe acute respiratory syndrome-coronavirus-2 omicron (B.1.1.529) variant are increasing. This study aimed to assess neutralizing antibody activity against the wild-type (BetaCoV/Korea/ KCDC03/2020), delta, and omicron variants after full primary and booster vaccinations with BNT162b2. A plaque reduction neutralization test was employed to determine 50% neutralizing dilution (ND 50 ) titers in serum samples. ND 50 titers against the omicron variant (median [interquartile range], 5.3 [50 titers than the detection threshold (50 titers against BetaCoV/Korea/KCDC03/2020, delta, and omicron, although titers against omicron remained lower than those against the other variants (P < 0.001). Our study suggests that booster vaccination with BNT162b2 significantly increases humoral immunity against the omicron variant.

4.
Clinical and Experimental Vaccine Research ; : 12-18, 2016.
Article Dans Anglais | WPRIM | ID: wpr-8378

Résumé

Various new technologies have been applied for developing vaccines against various animal diseases. Virus-like particle (VLP) vaccine technology was used for manufacturing the porcine circovirus type 2 and RNA particle vaccines based on an alphavirus vector for porcine epidemic diarrhea (PED). Although VLP is classified as a killed-virus vaccine, because its structure is similar to the original virus, it can induce long-term and cell-mediated immunity. The RNA particle vaccine used a Venezuela equine encephalitis (VEE) virus gene as a vector. The VEE virus partial gene can be substituted with the PED virus spike gene. Recombinant vaccines can be produced by substitution of the target gene in the VEE vector. Both of these new vaccine technologies made it possible to control the infectious disease efficiently in a relatively short time.


Sujets)
Animaux , Alphavirus , Maladies de l'animal , Circovirus , Maladies transmissibles , Diarrhée , Virus de l'encéphalite équine du Venezuela , Encéphalomyélite équine , Immunité cellulaire , Virus de la diarrhée porcine épidémique , ARN , Vaccins , Vaccins synthétiques , Vaccins à pseudo-particules virales , Venezuela
SÉLECTION CITATIONS
Détails de la recherche