Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
1.
Journal of Experimental Hematology ; (6): 688-694, 2022.
Article Dans Chinois | WPRIM | ID: wpr-939676

Résumé

OBJECTIVE@#To express matrix remodeling associated 7 (MXRA7) in the human acute myeloid leukemia SHI-1 cell line and to assess the role of MXRA7 in the biological function of SHI-1 cells.@*METHODS@#The full-length cDNA sequence of human MXRA7 was synthesized and subcloned into the lentivirus shuttle vector pRRL-Venus. SHI-1 cells were transfected with the lentivirus which was packaged with 293T cells. The YFP-positive cells were sorted by flow cytometry and the stable cell lines were obtained by expanded culture. The expression and distribution of MXRA7 in SHI-1 cells were verified by real-time qPCR, Western blot and laser confocal techniques. Cell proliferation and cell cycle were measured by flow cytometry, and apoptosis was determined by Annexin V and 7-AAD staining. The expression of apoptosis related proteins were detected by Western blot.@*RESULTS@#The stable SHI-1 cell line overexpressing MXRA7 was established successfully. Laser confocal analysis confirmed that MXRA7 was expressed in the cytoplasm of SHI-1 cells. Compared with the control cell line, the overexpression of MXRA7 showed no effect on the cell proliferation and cell cycle, but reduced the percentage of apoptosis cells induced by methotrexate. Moreover, the expression of BCL-2 protein was increased by overexpression of MXRA7, which can inhibit cell apoptosis.@*CONCLUSION@#The SHI-1 stable cell line overexpressing MXRA7 was established successfully, and MXRA7 could inhibit drug-induced apoptosis through increasing the expression of BCL-2 protein.


Sujets)
Humains , Apoptose , Protéines régulatrices de l'apoptose , Lignée cellulaire tumorale , Mouvement cellulaire , Prolifération cellulaire , Protéines membranaires/métabolisme , Protéines proto-oncogènes c-bcl-2/métabolisme
2.
Biomedical and Environmental Sciences ; (12): 29-39, 2021.
Article Dans Anglais | WPRIM | ID: wpr-878318

Résumé

Objective@#Antimony (Sb) has recently been identified as a novel nerve poison, although the cellular and molecular mechanisms underlying its neurotoxicity remain unclear. This study aimed to assess the effects of the nuclear factor kappa B (NF-κB) signaling pathway on antimony-induced astrocyte activation.@*Methods@#Protein expression levels were detected by Western blotting. Immunofluorescence, cytoplasmic and nuclear fractions separation were used to assess the distribution of p65. The expression of protein in brain tissue sections was detected by immunohistochemistry. The levels of mRNAs were detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and reverse transcription-polymerase chain reaction (RT-PCR).@*Results@#Antimony exposure triggered astrocyte proliferation and increased the expression of two critical protein markers of reactive astrogliosis, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP), indicating that antimony induced astrocyte activation @*Conclusion@#Antimony activated astrocytes by activating the NF-κB signaling pathway.


Sujets)
Animaux , Mâle , Rats , Antimoine/toxicité , Astrocytes/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Protéine gliofibrillaire acide/métabolisme , MAP Kinase Kinase Kinases , Souris de lignée ICR , Facteur de transcription NF-kappa B/métabolisme , Nitric oxide synthase type II/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
Détails de la recherche