Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres








Gamme d'année
1.
Article de Chinois | WPRIM | ID: wpr-772666

RÉSUMÉ

OBJECTIVE@#This study aimed to optimize the preparation of carboxymethyl chitosan/sodium alginate (CMCS/OSA) compound hydrogels. This study also aimed to investigate the applicability of the hydrogels in cartilage tissue engi-neering.@*METHODS@#Three groups of CMCS/OSA composite hydrogels with amino-to-aldehyde ratios of 2∶1, 1∶1 and 1∶2 were prepared. The microstructure, physical properties, and cell biocompatibility of the three groups of CMCS/OSA com-posite hydrogels were evaluated. Samples were subjected to scanning electron microscopy, rheological test, adhesion tension test, swelling rate test, and cell experiments to identify the CMCS/OSA composite hydrogel with the cross-linking degree that can meet the requirements for scaffolds in cartilage tissue engineering.@*RESULTS@#The experimental results showed that the CMCS/OSA hydrogel with a amine-to-aldhyde ratio of 1∶1 had good porosity, suitable gelling time, strong adhesive force, stable swelling rate, and good cellular biocompatibility.@*CONCLUSIONS@#The CMCS/OSA compound hydrogel prepared with a 1∶1 ratio of amino and aldehyde groups has potential applications in cartilage tissue engineering.


Sujet(s)
Alginates , Cartilage , Chitosane , Hydrogels , Ingénierie tissulaire
2.
Article de Chinois | WPRIM | ID: wpr-772672

RÉSUMÉ

Cartilage tissue engineering, an effective way to repair cartilage defects, requires an ideal scaffold to promote the regeneration performance of stem cells. Cartilage extracellular matrix (CECM) can imitate the living environment of cartilage cells to the greatest extent. CECM not only exhibits good biocompatibility with chondrocytes and stem cells, which can meet the basic requirements of scaffolds, but also promotes chondrocytes to secrete matrix and induce stem cells to differentiate into chondrocytes; as such, this matrix is a better scaffold and has more advantages than existing ones. The promotion and induction effects could be related to various cartilage-related proteins inside. However, the practical application of this technique is hindered by problems, such as poor mechanical properties and insufficient cell penetration of CECM. Association with other materials can compensate for these inadequacies to a certain degree, and finding a combination mode with optimized performance is the application trend of CECM. This review focuses on research of CECM materials in cartilage tissue engineering.


Sujet(s)
Cartilage , Biologie cellulaire , Chondrocytes , Matrice extracellulaire , Ingénierie tissulaire , Structures d'échafaudage tissulaires
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE