Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Chinese Journal of Burns ; (6): 12-17, 2019.
Article Dans Chinois | WPRIM | ID: wpr-804655

Résumé

Objective@#To analyze the silver content, homogeneity, and cytotoxicity of silver-containing products.@*Methods@#(1) Five kinds of silver-containing products A, B, C, D, and E were purchased from the market, and products A, B, C, and D are liquid or gel form while product E was dressing form. The silver content of each product and the homogeneity of product E were determined by flame method. The sample number was 3. (2) Human hepatocellular carcinoma cell line (HepG2) was selected as the evaluation model. Four silver-containing products A, B, C, and D were diluted with high-glucose dulbecco′s modified eagle medium (DMEM) at multiple ratios of 1∶100, 1∶200, 1∶400, and 1∶800, and then they were used for cell culture. Cells cultured with high-glucose DMEM and high-glucose DMEM containing 20 μg/mL silver nitrate were used as blank control and positive control, respectively. The cell viability was determined by methyl thiazolyl tetrazolium assay, and each sample number was 5. (3) Four mass concentrations of 0.031 3, 0.062 5, 0.125 0, and 0.250 0 μg/mL were prepared from silver-containing product A, and then they were used to culture HepG2 cell. Cells cultured with high-glucose DMEM containing fetal calf serum and 294 μg/mL potassium dichromate were used as positive control, while those containing fetal calf serum were used as blank control. Hoechst 33258 staining method was used to detect apoptosis rate of cells. The tail moment, tail length, and the percentage of DNA in the tail of cells were observed by comet assay to evaluate DNA damage. The sample numbers were all 3. Data were processed with one-way analysis of variance and least significant difference-t test.@*Results@#The silver content of products A, B, C, and D was (256.5±1.5) μg/mL, (271.5±1.3) μg/mL, (652.4±2.6) μg/g , (330.0±2.1) μg/g, which was in accordance with labelled amount. The silver content of product E was (0.158±0.013) mg/g, and the silver content of each piece of product E was (0.125±0.017) mg/g, showing good uniformity of product E. (2) Compared with the rate of blank control, the cell survival rates of product A at the dilution ratio of 1∶100, product B at the dilution ratio of 1∶100, and product C at the dilution ratio of 1∶100 and 1∶200 were significantly reduced (t=35.506, 8.914, 37.594, 30.693, P<0.01). Compared with the rate of positive control, the cell survival rates of product A at the dilution ratio of 1∶200, 1∶400, and 1∶800, product C at the dilution ratio of 1∶400 and 1∶800, products B and D at each dilution ratio were increased significantly (t=27.537, 18.262, 18.709, 26.333, 41.762, 15.776, 19.759, 20.443, 15.715, 26.792, 24.963, 31.803, 30.537, P<0.01). (3) The apoptosis rates of cells treated by 0.250 0 μg/mL product A and positive control were (6.1±0.4)% and (62.2±3.9)% respectively, which were significantly higher than the apoptosis rate of blank control [(3.3±0.7)%, t=13.327, 30.475, P<0.05]. The apoptosis rates of cells treated by 0.031 3, 0.062 5, 0.125 0 μg/mL product A were (2.9±0.4)%, (3.1±0.4)%, and (4.2±0.9)% respectively, which were close to the apoptosis rate of blank control (t=1.181, 0.133, 1.097, P>0.05). (4) The tail moment, tail length, and tail DNA percentage of cells cultured with 0.125 0 and 0.250 0 μg/mL product A were significantly higher than those cultured with blank control (t=29.026, 51.194, 21.851, 36.138, 24.721, 50.455, P<0.05 or P<0.01). However, the tail moment, tail length, and tail DNA percentage of cells cultured with 0.031 3 and 0.062 5 μg/mL product A were close to those cultured with blank control (t=5.878, 3.429, 2.779, 1.960, 1.328, 7.763, P>0.05).@*Conclusions@#The silver content of silver-containing products meets the requirements of the labeling. The concentration of product C is higher than that of other products, leading to a greater possibility of decreasing the survival rate of HepG2 cells. It is suggested that the products A and B should be taken as reference in the concentration setting of silver ion products. The product solution with higher concentration may have higher risk of damage to cell DNA. Therefore, it is not recommended to upregulate silver content of relevant products blindly in order to achieve better antibacterial effect.

2.
Chinese Journal of Burns ; (6): 183-186, 2018.
Article Dans Chinois | WPRIM | ID: wpr-806236

Résumé

Nowadays, antibacterial products containing silver ion are widely used in clinical wound treatment. The concentration of silver ion in products, pH value, and other factors may affect the release of silver ion and its antibacterial effects. In the treatment of clinical wound, silver ion product plays a good role in anti-infection, promoting healing and reducing medical expenses. In this paper, the related applications of silver ion products in wound surface are analyzed, and the antibacterial properties of silver ion and its therapeutic effects in wound treatment are summarized.

3.
Chinese Journal of Pharmacology and Toxicology ; (6): 203-206, 2017.
Article Dans Chinois | WPRIM | ID: wpr-514590

Résumé

Physiologically based pharmacokinetic (PBPK) modeling is established based on the information of existing human or other animal anatomy, knowledge of physiology and biochemical data. The model uses mathematical methods to simulate chemicals′process of absorption, distribution, metabolism and excretion in the body, in order to achieve the dose and interspecific extrapolation and to predict the chemical level in the specific organ at the specific time. In studies on toxicology of nanomaterials, the PBPK models in the silver nanoparticles, zinc oxide nanoparticles, titanium dioxide nanoparticles and polymer nanomaterials are gradually established. PBPK modeling can not only provide information on the dynamic change of nanomaterials in the body, but is of great significance for to quantitative evaluation of biological safety of nanomaterials. PBPK modeling will be a hot spot for research in the field of nanotoxicology.

SÉLECTION CITATIONS
Détails de la recherche