RÉSUMÉ
Objective: To reveal the similarities and differences in myocardial metabolic characteristics between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) mice using metabolomics. Methods: The experimental mice were divided into 4 groups, including control, HFpEF, sham and HFrEF groups (10 mice in each group). High fat diet and Nω-nitroarginine methyl ester hydrochloride (L-NAME) were applied to construct a"two-hit"HFpEF mouse model. Transverse aortic constriction (TAC) surgery was used to construct the HFrEF mouse model. The differential expression of metabolites in the myocardium of HFpEF and HFrEF mice was detected by untargeted metabolomics (UHPLC-QE-MS). Variable importance in projection>1 and P<0.05 were used as criteria to screen and classify the differentially expressed metabolites between the mice models. KEGG functional enrichment and pathway impact analysis demonstrated significantly altered metabolic pathways in both HFpEF and HFrEF mice. Results: One hundred and nine differentially expressed metabolites were detected in HFpEF mice, and 270 differentially expressed metabolites were detected in HFrEF mice. Compared with the control group, the most significantly changed metabolite in HFpEF mice was glycerophospholipids, while HFrEF mice presented with the largest proportion of carboxylic acids and their derivatives. KEGG enrichment and pathway impact analysis showed that the differentially expressed metabolites in HFpEF mice were mainly enriched in pathways such as biosynthesis of unsaturated fatty acids, ether lipid metabolism, amino sugar and nucleotide sugar metabolism, glycerophospholipid metabolism, arachidonic acid metabolism and arginine and proline metabolism. The differentially expressed metabolites in HFrEF mice were mainly enriched in arginine and proline metabolism, glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, glycerophospholipid metabolism, nicotinate and nicotinamide metabolism and arachidonic acid metabolism, etc. Conclusions: HFpEF mice have a significantly different myocardial metabolite expression profile compared with HFrEF mice. In addition, biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, glycerophospholipid metabolism and arginine and proline metabolism are significantly altered in both HFpEF and HFrEF mice, suggesting that these metabolic pathways may play an important role in disease progression in both types of heart failure.
Sujet(s)
Souris , Animaux , Défaillance cardiaque/métabolisme , Débit systolique , Chromatographie en phase liquide , Spectrométrie de masse en tandem , Métabolomique , Acides arachidoniques , ProlineRÉSUMÉ
OBJECTIVE@#Constructing a predictive model for urinary incontinence after laparoscopic radical prostatectomy (LRP) based on prostatic gland related MRI parameters.@*METHODS@#In this study, 202 cases were included. All the patients were diagnosed with prostate cancer by prostate biopsy and underwent LRP surgery in Peking University Third Hospital. The preoperative MRI examination of all the patients was completed within 1 week before the prostate biopsy. Prostatic gland related parameters included prostate length, width, height, prostatic volume, intravesical prostatic protrusion length (IPPL), prostate apex shape, etc. From the first month after the operation, the recovery of urinary continence was followed up every month, and the recovery of urinary continence was based on the need not to use the urine pad all day long. Logistic multivariate regression analysis was used to analyze the influence of early postoperative recovery of urinary continence. Risk factors were used to draw the receiver operator characteristic (ROC) curves of each model to predict the recovery of postoperative urinary continence, and the difference of the area under the curve (AUC) was compared by DeLong test, and the clinical net benefit of the model was evaluated by decision curve analysis (DCA).@*RESULTS@#The average age of 202 patients was 69.0 (64.0, 75.5) years, the average prostate specific antigen (PSA) before puncture was 12.12 (7.36, 20.06) μg/L, and the Gleason score < 7 points and ≥ 7 points were 73 cases (36.2%) and 129 cases (63.9%) respectively, with 100 cases (49.5%) at T1/T2 clinical stage, and 102 cases (50.5%) at T3 stage. The prostatic volume measured by preoperative MRI was 35.4 (26.2, 51.1) mL, the ratio of the height to the width was 0.91 (0.77, 1.07), the membranous urethral length (MUL) was 15 (11, 16) mm, and the IPPL was 2 (0, 6) mm. The prostatic apex A-D subtypes were 67 cases (33.2%), 80 cases (39.6%), 24 cases (11.9%) and 31 cases (15.3%), respectively. The training set and validation set were 141 cases and 61 cases, respectively. The operations of all the patients were successfully completed, and the urinary continence rate was 59.4% (120/202) in the 3 months follow-up. The results of multivariate analysis of the training set showed that the MUL (P < 0.001), IPPL (P=0.017) and clinical stage (P=0.022) were independent risk factors for urinary incontinence in the early postoperative period (3 months). The nomogram and clinical decision curve were made according to the results of multivariate analysis. The AUC value of the training set was 0.885 (0.826, 0.944), and the AUC value of the validation set was 0.854 (0.757, 0.950). In the verification set, the Hosmer-Lemeshow goodness-of-fit test was performed on the model, and the Chi-square value was 5.426 (P=0.711).@*CONCLUSION@#Preoperative MUL, IPPL, and clinical stage are indepen-dent risk factors for incontinence after LRP. The nomogram developed based on the relevant parameters of MRI glands can effectively predict the recovery of early urinary continence after LRP. The results of this study require further large-scale clinical research to confirm.
Sujet(s)
Mâle , Humains , Prostate/chirurgie , Prostatectomie/effets indésirables , Tumeurs de la prostate/anatomopathologie , Incontinence urinaire/étiologie , Laparoscopie/méthodes , Imagerie par résonance magnétique/effets indésirables , Récupération fonctionnelle , Études rétrospectivesRÉSUMÉ
OBJECTIVE@#To investigate the imaging effect of a near-infrared fluorescent targeted probe ICG-NP41 on the neurovascular bundles (NVB) around the prostate in rats.@*METHODS@#A near-infrared fluorescent targeted probe ICG-NP41 was synthesized. An animal model for NVB imaging was established using Sprague-Dawley rats (250-400 g). Experiments were conducted using a custom-built near-infrared windowⅡ(NIR-Ⅱ) small animal in vivo imaging system, and images collected were processed using ImageJ and Origin. The fluorescence signal data were statistically analyzed using GraphPad Prism. The signal-to-background ratio (SBR) for NVB was quantitatively calculated to explore the effective dosage and imaging time points. Finally, paraffin pathology sections and HE staining were performed on the imaging structures.@*RESULTS@#Except for rats in the control group (n=2), right-sided NVB of the rats injected with ICG-NP41 (n=2 per group) were all observed in NIR-Ⅱ fluorescence mode 2 h and 4 h after administration. At 2 h and 4 h, average SBR of cavernous nerve in 2 mg/kg group in fluorescence mode was 1.651±0.142 and 1.619±0.110, respectively, both higher than that in white light mode (1.111±0.036), with no significant difference (P>0.05); average SBR of 4 mg/kg group in fluorescence mode were 1.168±0.066 and 1.219±0.118, respectively, both higher than that in white light mode (1.081±0.040), with no significant difference (P>0.05). At 2 h and 4 h, the average SBR of 2 mg/kg and 4 mg/kg groups in fluorescence mode were higher than that of the control group (SBR=1), the average SBR of the 2 mg/kg group was higher than that of the 4 mg/kg group, and all the above with no significant difference (P>0.05). The average diameter of the nerve measured by full width at half maxima method was about (178±15) μm. HE staining of paraffin sections showed the right major pelvic ganglion.@*CONCLUSION@#The near-infrared fluorescent targeted probe ICG-NP41 can be used for real-time imaging of the NVB around the prostate in rats, providing a potential feasible solution for localizing NVB in real time during nerve-sparing radical prostatectomy.