Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
International Journal of Biomedical Engineering ; (6): 300-305, 2023.
Article Dans Chinois | WPRIM | ID: wpr-989354

Résumé

Objective:The microstructure, tensile strength, and bursting strength of different brands of hernia meshes were compared and analyzed through experiments to evaluate the performance of different meshes.Methods:The balance and microscope were used to test the weight and microstructure of 15 common meshes and the tensile testing machine and burst testing machine were used to test the tensile and bursting properties of the mesh, and the mechanical properties of the mesh were analyzed.Results:The woven structures of the mesh are diamond, polygon and circle. The average weight of inguinal meshes is 0.08 mg/mm 2, and the average weight of abdominal wall hernia meshes is 0.18 mg/mm 2. The wire diameters of G3 - G6 meshes are larger, while the mesh opening ratio of G12 is lower. In the tensile performance test, it is known that G15 has the highest tensile strength, G12 and G14 have lower tensile strengths in lightweight meshes, and G1, G2, and G7 have lower tensile strengths in lightweight meshes. In the burst performance test, it is known that G3, G9, and G15 have the highest burst strength, while G12, G13, and G14 have the lowest burst strength in lightweight meshes. G1, G2, and G4 have the lowest burst strength in lightweight meshes. Conclusions:The mesh with a polygonal mesh and a large mesh opening ratio has better mechanical properties. The results of this study provide experimental evidence for optimizing hernia meshes, which is expected to provide better support for related research and applications.

SÉLECTION CITATIONS
Détails de la recherche