Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
1.
Korean Journal of Nuclear Medicine ; : 182-188, 2019.
Article Dans Anglais | WPRIM | ID: wpr-786473

Résumé

Targeted alpha therapy (TAT) is an active area of drug development as a highly specific and highly potent therapeutic modality that can be applied to many types of late-stage cancers. In order to properly evaluate its safety and efficacy, understanding biokinetics of alpha-emitting radiopharmaceuticals is essential. Quantitative imaging of alpha-emitting radiopharmaceuticals is often possible via imaging of gammas and positrons produced during complex decay chains of these radionuclides. Analysis of the complex decay chains for alpha-emitting radionuclides (Tb-149, At-211, Bi-212 (decayed from Pb-212), Bi-213, Ra-223, Ac- 225, and Th-227) with relevance to imageable signals is attempted in this mini-review article. Gamma camera imaging, single-photon emission computed tomography, positron emission tomography, bremsstrahlung radiation imaging, Cerenkov luminescence imaging, and Compton cameras are briefly discussed as modalities for imaging alpha-emitting radiopharmaceuticals.


Sujets)
Électrons , Luminescence , Tomographie par émission de positons , Radio-isotopes , Scintigraphie , Radiopharmaceutiques , Tomoscintigraphie , Tomographie par émission monophotonique
2.
Nuclear Medicine and Molecular Imaging ; : 1-8, 2007.
Article Dans Anglais | WPRIM | ID: wpr-122247

Résumé

This review discusses the production of alpha-particle-emitting radionuclides in radioimmunotherapy. Radioimmunotherapy labeled with alpha-particle is expected to be very useful for the treatment of monocellular cancer (e.g. leukemia) and micrometastasis at an early stage, residual tumor remained in tissues after chemotherapy and tumor resection, due to the high linear energy transfer (LET) and the short path length in biological tissue of alpha particle. Despite of the expected effectiveness of alpha-particle in radioimmunotherapy, its clinical research has not been activated by the several reasons, shortage of a suitable a-particle development and a reliable radionuclide production and supply system, appropriate antibody and chelator development. Among them, the establishment of radionuclide development and supply system is a key factor to make an alpha-immunotherapy more popular in clinical trial. Alpha-emitter can be produced by several methods, natural radionuclides, reactor irradiation, cyclotron irradiation, generator system and elution. Due to the sharply increasing demand of 213Bi, which is a most promising radionuclide in radioimmunotherapy and now has been produced with reactor, the cyclotron production system should be developed urgently to meet the demand.


Sujets)
Particules alpha , Cyclotrons , Traitement médicamenteux , Transfert linéique d'énergie , Micrométastase tumorale , Maladie résiduelle , Radioimmunothérapie , Radio-isotopes
SÉLECTION CITATIONS
Détails de la recherche